

Center for Advanced Multimodal Mobility

Solutions and Education

Project ID: 2022 Project 07

DEVELOPING ROBUST SMART TRAFFIC SIGNAL

CONTROL

Final Report

by

Tianxin Li, Ph.D. (ORCID ID: https://orcid.org/0000-0002-3061-8077)

Graduate Research Assistant

The University of Texas at Austin

301 E. Dean Keeton Street, Stop C1761, Austin, TX 78712

Phone: 1-512-471-4541; Email: tianxinli@utexas.edu

Randy Machemehl, Ph.D., P.E. (ORCID ID: https://orcid.org/0000-0002-6314-2626)

Professor

The University of Texas at Austin

301 E. Dean Keeton Street, Stop C1761, Austin, TX 78712

Phone: 1-512-471-4541; Email: rbm@mail.utexas.edu

for

Center for Advanced Multimodal Mobility Solutions and Education

(CAMMSE @ UNC Charlotte)

The University of North Carolina at Charlotte

9201 University City Blvd

Charlotte, NC 28223

September 2023

https://orcid.org/0000-0002-3061-8077
mailto:tianxinli@utexas.edu
https://orcid.org/0000-0002-6314-2626
mailto:rbm@mail.utexas.edu

ii

iii

ACKNOWLEDGEMENTS

This project was funded by the Center for Advanced Multimodal Mobility Solutions and

Education (CAMMSE @ UNC Charlotte), one of the Tier I University Transportation Centers

that were selected in this nationwide competition, by the Office of the Assistant Secretary for

Research and Technology (OST-R), U.S. Department of Transportation (US DOT), under the

FAST Act. The authors are also very grateful for all of the time and effort spent by DOT and

industry professionals to provide project information that was critical for the successful

completion of this study.

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the

facts and the accuracy of the material and information presented herein. This document is

disseminated under the sponsorship of the U.S. Department of Transportation University

Transportation Centers Program in the interest of information exchange. The U.S. Government

assumes no liability for the contents or use thereof. The contents do not necessarily reflect the

official views of the U.S. Government. This report does not constitute a standard, specification,

or regulation.

iv

v

Table of Contents

EXECUTIVE SUMMARY ... xvi

Chapter 1. Introduction ..1

1.1 Problem Statement .. 2

1.2 Objectives ... 3

1.3 Expected Contributions ... 3

1.4 Report Overview ... 3

Chapter 2. Literature Review ...5

2.1 Introduction ... 5

2.2 Traditional Traffic Signal Control Methods ... 5
2.2.1 Pretimed Signal Control .. 5

2.2.2 Actuated Signal Control .. 6

2.2.3 Adaptive Signal Control .. 8

2.3 Reinforcement Learning Traffic Signal Control ... 10
2.3.1 Isolated Intersections ... 10

2.3.2 Coordinated Intersections .. 11

2.3.3 Deep Q-learning .. 12

2.3.4 Traffic Incident Management in Traffic Signal Control ... 13

2.4 Summary ... 14

Chapter 3. Deep Reinforcement Learning Algorithm ..17

3.1 Introduction ... 17

3.2 Reinforcement Learning ... 17

3.3 Q-Learning .. 19
3.3.1 Tabular Q-learning .. 21

3.3.2 Deep Neural Network and Deep Q-learning ... 22

3.4 Deep Q-learning Variations .. 24
3.4.1 Experience Replay ... 24

3.4.2 Target network .. 24

3.5 Summary ... 25
Chapter 4. Simulation Preparation ..28

4.1 Overview ... 28

4.2 Literature Review ... 28

4.3 Simulation Platform .. 30
4.3.1 Network ... 31

4.3.2 Traffic Demand ... 31

4.3.3 Incident Generation ... 32

vi

4.3.4 Emergency Service Vehicles Simulation in Sumo .. 32

4.4 Simulation Procedure .. 34

4.5 Implementation ... 35

4.6 Summary ... 36
Chapter 5. Single Intersection Deep Reinforcement Learning Traffic Signal Control39

5.1 Overview ... 39

5.2 Deep Q-Learning Model ... 39
5.2.1 Agent ... 40

5.2.2 Environment .. 40

5.2.3 State ... 40

5.2.4 Action .. 41

5.2.5 Reward .. 41

5.2.6 Policy ... 42

5.2.7 DNN Structure ... 43

5.3 Variations of DQN .. 45
5.3.1 Experience Replay ... 45

5.3.2 Double DQN ... 45

5.4 Non-learning Traffic Signal Control Algorithms ... 47
5.4.1 Uniform Traffic Controller .. 47

5.4.2 Webster’s Traffic Controller ... 48

5.4.3 Max-pressure Traffic Signal Controller .. 49

5.5 Hyperparameter Tuning .. 50
5.5.1 Hyperparameters in DQN .. 50

5.5.2 Learning Rate .. 52

5.5.3 Discount Factor ... 52

5.5.4 Temporal Difference Step ... 52

5.5.5 Number of Hidden Layers ... 53

5.5.6 Target Frequency ... 53

5.5.7 Minimum Green Duration ... 54

5.5.8 Non Tuned Hyperparameters .. 54

5.5.9 Summary ... 54

5.6 Simulation Platform .. 56
5.6.1 Network ... 56

5.6.2 Demand ... 56

5.6.3 Measures of Effectiveness ... 56

5.6.4 Code .. 57

5.7 Results ... 57

vii

5.7.1 Hyperparameter Tuning Results .. 57

5.7.2 Traffic Controller Performance Comparison ... 59

5.8 Conclusion .. 64
Chapter 6. Grid Network Deep Reinforcement Learning Traffic Signal Control with

Incidents ..65

6.1 Overview ... 65

6.2 Literature Review ... 65

6.3 Incident Generation ... 67

6.4 New State .. 68

6.5 Simulation Settings ... 68
6.5.1 Network ... 69

6.5.2 Demand ... 70

6.6 Hyperparameter Tuning .. 71

6.7 Results ... 71
6.7.1 Hyperparameter Tuning Results .. 71

6.7.2 Controller Performance Comparison ... 76

6.8 Conclusion .. 86

Chapter 7. Summary and Conclusions ..89

7.1 Summary ... 89

7.2 Directions for Future Research ... 90
Chapter 8. Glossary ...93

Chapter 9. References ..94

Appendix 1: SUMO Network Generation Script ..99

Appendix 2: Developed Traffic Demand Generating Script ...100

Appendix 3: DQN Hyperparameter Tuning Results for Single Intersection Network101

Appendix 4: Max-pressure Hyperparameter Tuning Results for Single Intersection

Network ...107

Appendix 5: Uniform Hyperparameter Tuning Results for Single Intersection Network .108

Appendix 6: Webster’s Hyperparameter Tuning Results for Single Intersection Network109

Appendix 7: Hyperparameter Tuning Results: DQN in Corridor Network with 6,000

Traffic Demand and Incident ...112

Appendix 8: Hyperparameter Tuning Results: Max-pressure in Corridor Network with

6,000 Traffic Demand and Incident ...113

Appendix 9: Hyperparameter Tuning Results: Uniform in Corridor Network with 6,000

Traffic Demand and Incident ...114

viii

Appendix 10: Hyperparameter Tuning Results: Webster’s in Corridor Network with 6,000

Traffic Demand and Incident ...115

Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid with 6,000 Traffic

Demand and Incident ..118

Appendix 12: Hyperparameter Tuning Results: Max-pressure in 2x2 Grid Network with

6,000 Traffic Demand and Incident ...119

Appendix 13: Hyperparameter Tuning Results: Uniform in 2x2 Grid Network with 6,000

Traffic Demand and Incident ...120

Appendix 14: Hyperparameter Tuning Results: Webster’s in 2x2 Grid Network with 6,000

Traffic Demand and Incident ...121

Appendix 15: Hyperparameter Tuning Results For DQN in 2x2 Grid Network with 6,000

Traffic Demand and No Incident ...124

Appendix 16: Hyperparameter Tuning Results For Max-pressure in 2x2 Grid Network

with 6,000 Traffic Demand and No Incident ...125

Appendix 17: Hyperparameter Tuning Results For Uniform in 2x2 Grid Network with

6,000 Traffic Demand and No Incident..126

Appendix 18: Hyperparameter Tuning Results For Websters in 2x2 Grid Network with

6,000 Traffic Demand and No Incident..127

ix

x

List of Figures

Figure 3-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018) 17

Figure 3-2. Bus line simulation demonstration Algorithm: Q-learning 21

Figure 3-3. Deep neural network with three hidden layers

(https://www.ibm.com/cloud/learn/neural-networks) ... 22

Figure 3-4. Algorithm: Q-learning with DQN ... 23

Figure 3-5. Algorithm: Deep Q-learning with Experience Replay and Target Network 26

Figure 4-1. Settings of Stopping Vehicle in Route File .. 32

Figure 4-2. Pseudocode for the Simulation Framework ... 33

Figure 4-3. 4x4 Grid Network with Traffic Incident .. 34

Figure 4-4. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles 35

Figure 5-1. Algorithm: Deep Q-learning with Experience Replay and Target Network 47

Figure 5-2. Hyperparameter tuning results for each controller... 57

Figure 5-3. Hyperparameter tuning results for all controllers in one graph 58

Figure 5-4. System Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand .. 60

Figure 5-5. Intersection Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand .. 60

Figure 5-6. Frequency of phase selection in one simulation for DQN controller with

6,000 Demand ... 61

Figure 5-7. Frequency of phase selection in one simulation for Max-pressure controller

with 6,000 Demand ... 62

Figure 5-8. System Level Performance Comparison of DQN and other Non-learning

Controllers with 4,000 Demand .. 63

Figure 5-9. Intersection Level Performance Comparison of DQN and Non-learning

Controllers with 4,000 Demand .. 63

Figure 6-1. Corridor with two intersections .. 69

Figure 6-2. 2x2 Grid Network .. 70

xi

Figure 6-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle

demand and incident (Separate Graph) ... 72

Figure 6-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle

demand and incident (Separate Graph) ... 73

Figure 6-5. Hyperparameter tuning results for the corridor network with 6,000 vehicle

demand and incident (Combined Graph) .. 73

Figure 6-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle

demand and incident (Combined Graph) .. 74

Figure 6-7. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle

demand and no incident (Separate Graph) .. 75

Figure 6-8. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle

demand and no incident (Combined Graph) ... 75

Figure 6-9. System Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand and Incident in Corridor Network 76

Figure 6-10. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 6,000 Demand and Incident in Corridor Network 77

Figure 6-11. System Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand and Incident in 2x2 Grid Network 77

Figure 6-12. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 78

Figure 6-13. System Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand and No Incident in Corridor Network 79

Figure 6-14. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 6,000 Demand and No Incident in Corridor Network 79

Figure 6-15. System Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80

Figure 6-16. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80

Figure 6-17. System Level Performance Comparison of DQN and other Non-learning

Controllers with 4,000 Demand and Incident in Corridor Network 81

Figure 6-18. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 4,000 Demand and Incident in Corridor Network 82

xii

Figure 6-19. System Level Performance Comparison of DQN and other Non-learning

Controllers with 4,000 Demand and No Incident in Corridor Network 82

Figure 6-20. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 4,000 Demand and No Incident in Corridor Network 83

Figure 6-21. System Level Performance Comparison of DQN and other Non-learning

Controllers with 4,000 Demand and Incident in 2x2 Grid Network 83

Figure 6-22. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 84

Figure 6-23. System Level Performance Comparison of DQN and other Non-learning

Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 84

Figure 6-24. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 85

Figure 6-25. System Level Performance Comparison of DQN and other Non-learning

Controllers with 4,000 Demand and No Incident in 2x2 Grid Network (with

further training) ... 86

Figure 6-26. Intersection Level Performance Comparison of DQN and other Non-

learning Controllers with 4,000 Demand and No Incident in 2x2 Grid

Network(with further training) ... 86

xiii

xiv

List of Tables

Table 5-1. Hyperparameters tuned in DQN .. 51

Table 5-2. Parameters in DQN including hyperparameter values .. 55

Table 5-3. Hyperparameters for non-learning controllers .. 55

Table 6-1. Parameters used in DQN controller for the corridor and grid network 71

xv

xvi

EXECUTIVE SUMMARY

Traffic signal control is a crucial element of urban mobility that profoundly influences

transportation network efficiency and safety. Traditional traffic signal control systems rely on

fixed-time or actuated signal timings, often failing to adapt to dynamic traffic demands and

congestion patterns. This technical report explores the application of Reinforcement Learning

(RL) algorithms to traffic signal control, aiming to enhance traffic flow efficiency and alleviate

congestion.

The research develops a simulation model of a signalized intersection and trains RL

agents to dynamically adjust signal timings based on real-time traffic conditions. These RL

agents are designed to learn from experience, adapt to changing traffic patterns, and optimize

traffic flow, even in scenarios with unexpected traffic incidents.

The study examines the benefits of RL algorithms in optimizing traffic signal control,

both in scenarios with and without traffic incidents. To achieve this, an incident generation

module is integrated into an open-source traffic signal performance simulation framework that

relies on the Simulation of Urban MObility SUMO software. This module introduces the

presence of emergency response vehicles and randomly generates traffic incidents within the

network. By exposing RL agents to this environment, they can learn and fine-tune traffic signal

control to minimize system delay.

Initially, the research focuses on a single intersection scenario, employing the DQN

algorithm to form the RL agent traffic signal controller. The training process is enhanced through

the utilization of experience replay and target network techniques, addressing the limitations of

the DQN algorithm. Hyperparameter tuning identifies the optimal parameter combination for

training, with results showcasing the superiority of DQN over other controllers in terms of

system-wide and intersection-specific queue distribution and vehicle delay.

The study is subsequently extended to encompass a small corridor featuring two

intersections and a grid network with a 2x2 intersection configuration. The incident generation

module introduces various traffic scenarios to the RL agent, and once again, hyperparameter

tuning confirms the DQN model's effectiveness in reducing congestion and enhancing system

performance. Robustness testing under varying demands demonstrates the consistent

performance of the DQN model.

In summary, this technical report underscores the potential of RL algorithms in

optimizing traffic signal control, both in scenarios with and without traffic incidents. The

incident generation module creates a realistic learning environment for RL agents, resulting in

improved system performance and reduced congestion. Furthermore, the importance of

hyperparameter tuning is emphasized as a critical component in establishing a strong foundation

for RL training processes.

xvii

1

Chapter 1. Introduction

Traffic signal systems play an essential role in the transportation network to minimize the

number of traffic accidents and maintain orderly traffic flow. Traffic signal control methods

include three broad categories: pretimed control, actuated control, and adaptive control. Pretimed

control has fixed cycle lengths and phasing, so it is not responsive to traffic demand fluctuations.

Actuated control is designed to respond to variable traffic demands but the nature of the potential

response is constrained by the combination of detection capability and fixed controller settings.

Adaptive control could lead to better performance if the proposed methods can accurately predict

future traffic patterns.

With the explosive development of computing power and data accessibility, as well as the

advanced development of artificial intelligent (AI), there are more possibilities to improve

existing traffic signal control performance (Winston, 1992; Russell and Norvig, 2002). Three

categories of AI technologies have been used commonly: supervised learning, unsupervised

learning, and reinforcement learning. Because of the characteristics of the traffic signal control

problems, reinforcement learning fits our needs best (Arel, 2010). Reinforcement learning is

designed to handle optimization problems by learning the interaction between agents and the

environment. The core concept behind reinforcement learning is to take advantage of the

machine computing capability to discover the relationships between the traffic signal control, the

intersection environment and the traffic flow patterns by trial and error. Due to the complexity of

the problem, it would be impractical for human beings to complete such complicated calculations

in a short period of time.

Deep Q-learning is one of the most commonly used methods in reinforcement learning

because of its ease of implementation and better performance as the data scale increases. Deep

Q-leaning is a combination of Q-learning and deep neural network. Q-learning represents a

method to use a determined or approximated Q-table to guide the actions of the agents. With the

training process, the Q-table is updated and reaches convergence so that every action taken in the

future will be the best choice of the agent in order to maximize the long-term cumulative

rewards.

Combined with deep learning, reinforcement learning can explore more complicated

relationships between the agents and their environment to provide potentially better performance

(LeCun et al., 2015; Goodfellow et al., 2016; Kamilaris and Prenafeta-Boldú, 2018). Deep

learning relies on a neural network, which mimics the thinking and decision-making process of

neuron activation (Wang, 2003; Abiodun et al., 2018). The more layers of the neural network

used, the more complicated patterns between the inputs and outputs can be detected. However,

more layers of neural network also require more computing power during the calculation. One

must consider the tradeoff between the calculation effort and representation of the relationship

between the inputs and outputs.

For a complicated problem, a deterministic Q-table is impossible to generate so a deep

neural network is utilized to approximate the Q-table. Rather than having a concrete Q-table,

deep Q-learning uses the neural network between the inputs and outputs to approximately

2

represent the Q-table. Therefore, the training process will update the coefficients associated with

the neural network to improve the prediction accuracy.

Although considerable research has focused on using deep Q-learning to improve the

performance of actuated traffic signals in a network, one key question has not been targeted yet.

That is how disruptions within the network should be addressed. The concern is that traffic signal

control based on deep Q-learning and normal traffic condition settings might not be able to

adequately respond to traffic flow disruptions caused by traffic incidents (crashes, disabled

vehicles or objects dropped on the roadway). This dissertation is developed to fill this gap,

developing a robust traffic signal control equipped with the deep Q-learning while also

considering traffic incidents in the network.

1.1 Problem Statement

Without testing the performance when traffic incidents occur, the robustness of the deep

Q-learning traffic signal control for the network cannot be guaranteed. When traffic incidents

occur, the network will suffer a sharp and temporary capacity shortage on the involved link(s)

causing diversion to other links. Traffic signal timing is the only practical means of responding

to incident disruptions to reduce the negative impact of traffic incidents. Due to the complexity

of the network problems, operators from the traffic management center often cannot provide an

optimal traffic signal plan in a short period of time. Traffic incidents can occur in any location

and any situation in the network, making the previous experience less useful.

The core problem of the traffic incident case is sudden unmatched travel demand and

supply. If traffic signals can utilize the real-time objective inputs from their environment,

including traffic flows and intersection performance (e.g., queue length and total control delays),

to take actions quickly enough, the network performance could be improved immediately.

Reinforcement learning methods promise to provide solutions for this kind of problem.

Each AI agent keeps exploring the relationship between traffic signal control and vehicle queue

length in its intersection and once the knowledge collected is enough to produce an accurate

approximation, the action chosen by the AI agent (maintain the current phase or shift to another

phase) will maximize the improvement of the intersection performance in terms of the chosen

measure of effectiveness such as queue length or delay reduction.

If the agent has never experienced traffic incident impacts, it must encounter the situation

enough times to “understand” the impact of incidents and how to take optimal actions

responsively. Creating traffic incidents in the real network to train the deep Q-learning algorithm

is problematic so the simulation method comes in handy. There are no available simulation tools

on the market to allow users to combine the application of reinforcement learning and traffic

network incidents.

This study is to fill this gap. By developing an incident responsive network in an open-

source microscopic simulator and exploring the advanced deep Q-learning method, a robust AI-

assisted actuated traffic signal control system will be developed.

3

1.2 Objectives

The objectives of this dissertation include the following key components:

1. Build a traffic incident responsive simulator based on an open-source microscopic

traffic simulation software system. This simulator will characterize an incident occurring in the

network and blocking a lane that is part of a link. In addition, the simulator will simulate the

impact of emergency service vehicles (an abstraction of police cars, EMS, etc.) in response to the

incident. In this way, the full impact of the incident and the rescue process can be evaluated

quantitatively based on traditional measures of effectiveness, such as queue lengths and total

system delay.

2. A deep Q-learning model will be developed and trained with the data from the

simulation process. The proposed deep Q-learning method will take advantage of the most

advanced methods in the market, including the prioritized experience replay and dueling

network. The deep Q-learning model will be trained in a single intersection without traffic

incidents.

3. The well-trained deep Q-learning model will be applied to all the traffic signals of a

grid network where all intersections are identical to the single intersection in the previous study

and the network will encounter traffic incidents occurring randomly in time and location.

Transfer learning methods will be applied to reduce the calculation tasks to allow the deep Q-

learning model to perform well in a different environment.

1.3 Expected Contributions

To achieve these goals, this study explores the application of RL, specifically Q-learning

integrated with deep neural networks, to enhance traffic signal control. It explores RL's capacity

to enhance traffic flow and alleviate congestion, effectively addressing the shortcomings of

conventional fixed-time and actuated signal systems.

1.4 Report Overview

This dissertation is organized as follows. Chapter 1 describes the motivation, problem

statement, objectives, and research scope. Chapter 2 is a comprehensive literature review of the

history of traffic signal control, the common framework of traffic signal control, and the most

advanced research on traffic signal control based on reinforcement learning methods. Chapter 3

presents the proposed deep Q-learning model as well as advanced tools to improve its

performance. Chapter 4 explains the open-source micro simulation software, the traffic incident

analysis module, network choice, demand generation, and details from the incident module.

Chapter 5 describes the model performance for a single intersection without traffic incident

disruptions. Chapter 6 describes the transfer of the proposed deep Q-learning model to a network

with adjustments to enable evaluation of traffic incident handling. Chapter 7 concludes the

dissertation and suggests future work.

4

5

Chapter 2. Literature Review

2.1 Introduction

An intersection is where vehicle paths cross sharing a common space. In earlier days,

there were no traffic control devices to facilitate the common space sharing, so users had to

compete for the right of way. To improve safety and facilitate orderly space sharing, traffic

control devices were introduced. Traffic control signals are commonly used by agencies to

improve intersection safety and operational efficiency.

Generally, signalized intersections accommodate all ground transportation modes,

including passenger cars, bicycles, and pedestrians. However, the purpose of this paper is

building fundamental reinforcement learning traffic signal control based on simulation methods

so only passenger cars are considered throughout the paper.

The following section summarizes important literature for the development of traffic

signal control methods, including pretimed, actuated, adaptive, and machine learning control.

2.2 Traditional Traffic Signal Control Methods

The basic logic behind traffic signal timing is to provide optimal amounts of green signal

time to conflicting movements to reduce conflicts and decrease the likelihood of traffic accidents

and to improve efficiency usually measured by fewer delays.

There are three types of traffic signal control methods commonly used today: pretimed,

actuated, and adaptive. None of them is superior to the others since they perform different roles

for different types of intersections as well as traffic arrival patterns. Therefore, all of them can

have a significant impact on the traffic network in terms of safety and efficiency.

2.2.1 Pretimed Signal Control

 Pretimed traffic signal control is defined as a predetermined traffic signal schema with

fixed green time for each phase as well as fixed cycle length and fixed phase patterns. The signal

cycle length needs to be tuned to minimize the control delay and the green time split for each

approach is normally based on the flow ratios between different phases (Kell and Fullerton,

1991).

Pretimed traffic signal control methods are commonly used for both isolated intersections

and networks (Bell, 1992; Slinn et al., 1998). Webster proposed a closed-form formula to split

the green time proportionally by taking into account the historical traffic flow ratios between

phases (Webster, 1958). The cycle length is tuned based on the characteristics of the intersection

to minimize the total delay. No real-time data from the field is required and the historical traffic

flow needs to be aggregated.

Coordination of pretimed controllers to produce traffic progression can improve network

efficiency decreasing unnecessary stops and reducing delays. The GreenWave was developed

(Roess et al., 2004) as an extension of the Webster methods by considering the travel time at a

chosen speed between intersections (called offset) to reduce numbers of vehicular stops. This

6

method requires all associated intersections to have the same cycle length, which is usually the

maximum cycle length from all intersections.

Practitioners have developed different types of extensions of pretimed traffic signal

control. For example, intersections could have different pretimed traffic signal schemes during

different times of the day and different schemes for weekdays and weekends (Mirchandani and

Head, 2001). Instead of having only one signal plan for a specific intersection, as many as 20

different plans could be applied and could be automatically chosen by the signal controller based

on either time of day or traffic demand (Roess, 2004).

Pretimed signal control is an offline method which means there is no need to collect any

real-time information from the field. It relies on historical traffic data to adjust the green time

split, cycle length, and phase patterns. It is easy to maintain compared to other more advanced

traffic signal control methods which require field data, including flow and queue length to tune

their parameters. Therefore, pretimed signal control is still the most commonly applied method

in the traffic network.

2.2.2 Actuated Signal Control

Since traffic demand constantly varies, the basic objective of signal control is to

accommodate demand variability. Pretimed methods can address this variability by choosing

among many stored timing plans by time of day or volume thresholds (if detection is provided).

Actuated signal control measures real time traffic flows for all actuated phases and is designed to

be flexible enough to change green times in response to demand (Fellendorf, 1994). Every

actuated phase has a maximum green time so if demand is heavy on all phases, every phase will

be the maximum green and the actuated scheme evolves into pretimed operation. Actuated

control does not work well in coordinated signal systems, since time-based coordination requires

every signal to have the same cycle length, that is, to provide time based coordination in a

network, actuated signals must “act like” pretimed signals (Yin, 2007).

Actuated signal control collects real time data from the intersection approaches, such as

queue length or traffic flow, to extend the current phase duration or terminate the current phase

to start the next phase as needed. In actuated traffic signal control, several key components could

be varied, including phase sequences, green time for each phase, and cycle length, which does

not coordinate with other adjacent intersections (Roess, 2004).

The benefits of implementing actuated signal control are obvious. It can adjust the current

plan to the varied traffic conditions, such as flow fluctuation or changing traffic demand patterns,

to minimize control delay and improve efficiency. It is recommended to use actuated traffic

control in a non-oversaturated traffic flow scenario. Because if the traffic flow is approaching the

capacity of the road and stable, especially during the peak hours, pretimed signal control

programmed proportionally to the critical flow will be equivalent but less expensive and require

less maintenance.

Semi-actuated control refers to actuated control with detectors only on the minor road so

the green rests on the major road until a vehicle is detected on the minor road. In this way, the

associated intersection can maintain the green time for the major road and also provide service to

7

the minor street when needed. This method is appropriate for intersections where the traffic

pattern has a noticeable difference in volume from the major and minor roads. If the actuated

green phase for the minor roads is called too many times, the vehicles from the major roads

suffer significant delay and more stops, which is against the purpose of implementing the semi-

actuated control.

Fully actuated control includes detectors for all signal phases and allows real time

adjustment of the signal plan to accommodate traffic for all intersection approaches rather than

only the minor roads. By taking into account real time traffic flow from detectors, the signal plan

can extend or terminate any phase as needed. This helps the intersection to respond to varied

traffic flow from all approaches (Lin, 1985).

Researchers have investigated methods of using actuated control in coordinated

networks, however, as noted earlier, coordination methods generally require actuated control to

limit the flexibility they are designed to provide. Two famous fully actuated signal control

methods are Self-Organizing Traffic Light (SOTL) and max pressure. Self-organization used

here represents the concept of signal control for intersections in a network that can interact with

each adjacent one and achieve dynamically a global optimum (Gershenson, 2005). Cools et al.

(2013) proposed an on-demand responsive actuated signal control with varying traffic demand

and overcame the traditional green wave method of allocating unnecessary green time or

deficient green time for the incoming vehicles. It is a method that helps traffic flow move as

platoons by forcing the vehicles to wait at the stop line until a queue size threshold is met. Once

the approaches accumulate queues surpassing the predefined threshold, the green signal shifts to

move those vehicles potentially more efficiently than the existing green wave method.

Max pressure control was introduced into actuated signal control (Varaiya, 2013). This

method monitors the pressure from all approaches, as the difference between flow for incoming

lanes and outgoing lanes of each approach, and chooses the maximum pressure releasing phase

to allow the maximum number of vehicles to enter the intersection and hence ensure the

minimum pressure for the phase duration. This method requires vehicle flow information from

adjacent intersections as a precise measure of the pressure. Weighted queue lengths are needed to

calibrate intersections to achieve the best performance.

Actuated control could be categorized into two broad classes, including isolated and

coordinated. Isolated intersections with actuated control only focus on improving efficiency and

safety of one intersection, while coordinated intersections will deploy a reasonable offset and

other parameters to reduce the unnecessary stops and delay for the coordinated network.

Semi-actuated can be used for an arterial corridor since the major traffic flow would use

the arterial street and minor cross streets would be served with green only when needed

(Skabardonis, 1998). The majority of the green time and capacity should be assigned to the

corridor rather than the minor movements. Fully actuated control would be most beneficial for

isolated intersections where traffic demands from all approaches vary heavily.

Implementing actuated signal control to adjust the control plan in real-time has

limitations. A complicated program must be provided for the controllers to take the inputs and

adjust the control plan accordingly. The cost of installation is more expensive than pretimed

8

signal control and maintenance costs are another problem. The induction loop detectors

commonly used in these methods are installed under the pavement surface and if the pavement

structure moves either vertically or horizontally the inductance loop detector wires break and the

cost of replacing them is not trivial.

2.2.3 Adaptive Signal Control

Adaptive signal control refers to the technology that collects real-time data from the

installed detectors to dynamically determine green phase and its duration in response to current

and predicted future traffic demands based on programmed algorithms to increase the

performance of the intersections.

Adaptive signal control is considered to be advantageous over actuated signal control for

providing lower control delay and better intersection throughput performance (Gayah, 2014).

The key component of adaptive signal control is to dynamically adjust the parameters based on

the future traffic flow prediction (Klein, 2001). The most famous traffic signal control

frameworks based on adaptive signal control include TRANSYT, Split Cycle Offset

Optimization Technique (SCOOT), Sydney Coordinated Adaptive Traffic System (SCATS),

Optimized Policies for Adaptive Control (OPAC), Real-Time Hierarchical Optimized

Distributed and Effective System (RHODES), and ASC Lite. The following content will review

all of these frameworks.

In 1969, Robertson proposed a fixed-time traffic signal control algorithm based on the

traffic flow passing through a road network to minimize the sum of the average queues in the

network (Robertson, 1969). It is an off-line method that uses macro-simulation since it relies on

historic flow data. It was one of the earliest traffic signal control methods that relied on a digital

computer program to help researchers and practitioners to optimize the traffic signal control,

including offset and green time split. It can be used to control up to 50 intersections in a network.

The core components in TRANSYT are based on cyclic flow profiles (CFP) that estimate

queue lengths based on historic data so to evaluate the performance of alternative signal timings.

The CFP measures the one-way traffic flow from one approach and averages the flow over a

specific duration. The estimated queue length and clearing time from the CFP are used to predict

the impact of offset and green splits to find the best signal timing parameters.

Based on the TRANSYT, SCOOT was introduced to overcome some of the limitations of

TRANSYT (Hunt, 1981). As mentioned before, TRANSYT is an offline method and relies on

historic data. In contrast, SCOOT takes advantage of technology development as vehicle sensors

have become available. Detectors are installed upstream to obtain traffic flow information so to

improve the estimation of queue length accuracy. In addition, since SCOOT relies on real-time

traffic information and calculates the signal timing parameters quickly, it is an online method.

Lastly, SCOOT adjusts the signal timing parameters gradually to avoid significant timing

fluctuations that could disrupt flow (Hunt, 1981). Transport and Road Research Laboratory

(TRRL) tested the performance of SCOOT in England cities in 1975 by floating cars and found

that SCOOT reduced average queue length by 12% (Robertson, 1986).

9

SCATS was introduced in Sydney, Australia in 1990. It utilizes the traffic flow inputs

collected by installed detectors to understand the real-time traffic. It also has a library that

records the pre-defined signal plans based on the traffic flow patterns to help dynamically adjust

the signal timing parameters in a short period. The adjustable parameters include phase split,

cycle length, and offsets (Lowrie, 1990). SCATS has been implemented in Australia for

controlling more than 1,800 signals and has achieved significant improvement in terms of

reducing delay and queue length. In addition, SCATS has been implemented in multiple other

areas and has achieved promising performance improvement (Akcelik et al., 1998; Stevanovic,

2009; Dutta et al., 2010).

In the early 80s, researchers at the University of Lowell with support from the U.S.

Department of Transportation developed OPAC, varying signal timing plans dynamically to

accommodate real-time traffic demand patterns. It ignores the cycle concept and only considers

the split time of sequential phases by either extending the current phase or starting the next phase

earlier (Gartner, 2002). Implementation of this method requires predetermining the phases for

each intersection. To improve performance, OPAC considers both real-time data collected from

upstream detectors and historic flow data for better queue and delay estimation. Dynamic

programming and rolling horizon optimization are used to find the optimal solutions for the

signal timing parameters in response to traffic patterns. OPAC can be implemented for

distributed individual intersections to achieve network-level optimization (Gartner, 2001).

RHODES is another famous adaptive signal control framework that can be implemented

for a distributed system. RHODES utilizes an hierarchical control structure for connecting

different components in traffic signal optimizing problems, including network loading, network

flow estimation, and traffic signal control activation by exploiting the modern technologies and

availability of real-time data (Head, 1992). RHODES not only considers the software for traffic

signal control, but also the hardware components, such as the communication system. RHODES

applies a dynamic programming method to optimize the single intersection signal timing plan for

splits and cycle length while implementing the REAMBAND model for platoon progression

optimization (Dell, 1995).

To reduce the costs of installation and operation while keeping the benefits of traditional

adaptive signal control frameworks, the Federal Highway Administration (FHWA) (Ghaman,

2007) developed ASC Lite to integrate the process of traffic flow monitoring and signal plan

optimizing accordingly. ASC Lite focuses on linear and arterial networks. The developed control

module has been included in the CORSIM simulation software for users to deploy and test their

signal timing strategies.

Performance of ASC Lite has been evaluated (Shelby, 2008) by field implementation,

including Gahanna, OH, Houston, TX, Bradenton, FL, and EI Cajon, CA. The evaluation shows

that ASC Lite has been demonstrated effective in terms of reduction of delay, arterial travel time,

fuel consumption, and vehicle stops. In addition, ASC Lite was also evaluated by field

implementation in Albany, New York, showing that the system provided benefits of delay

reduction in the core area of the analytical network, but not the boundary (Ban, 2014).

In conclusion, adaptive signal control has attracted a large number of researchers and

practitioners to develop various frameworks and test their performance in real scenarios.

10

Evolution of these strategies is mainly due to modern technologies and algorithms, including

faster computing machines and more efficient mathematical algorithms. With the rapid

development of learning algorithms and lower costs of data storage and computing,

reinforcement learning has been adopted to improve signal control performance.

2.3 Reinforcement Learning Traffic Signal Control

Machine learning tackles the problems that relate to detecting patterns and drawing

conclusions from historic experience. Reinforcement learning, one of the most famous machine

learning techniques, focuses on optimization problems by directly converting input data into

action choices without modeling the environment. For example, in the traffic signal control

process, the adaptive control methods require the prediction of the queue length or vehicle arrival

patterns from the adjacent network through mathematical models. In a complex system,

particularly in the transportation network, to fully understand the relationship between vehicle

arrival patterns and traffic signal phase durations is difficult, sometimes even impossible.

However, in reinforcement learning, models of this kind of detail are not required and hence

attract many researchers to explore its capability in the signal control domain (Abdulhai, 2003).

Reinforcement learning collects experience from the interaction between an agent and its

environment. Without building a model for the environment, the agent could extract useful

information from the environment and use trial and error to come up with a solution to improve

its behavior to achieve a long-term goal (Sutton and Barto, 2018).

Reinforcement learning includes model-free and model-based algorithms. In our

scenario, where traffic signal control responds to varying traffic demand, model-based

algorithms will require modelers to pre-specify the models for the intersection as well as the

vehicle arrival patterns, which is difficult. Therefore, model-free approaches achieve a

significant focus in the traffic signal control field, especially Q-learning. The Q-learning agent,

the signal controller, collects the state from its interacting environment to adjust its behavior to

improve its performance measured by a performance index. It has many advantages facilitating

the improvement of traffic signal control. Watkins proved that Q-learning would converge to

optimal action-values with the probability of 1 as long as all state and action pairs are repeated in

the samples (Watkins, 1992). More details for Q-learning will be introduced in Chapter 3. Here

we focus on the applications of reinforcement learning to traffic signal control.

2.3.1 Isolated Intersections

Abdulhai (2003) proposed a simple yet powerful Q-learning model for traffic signal

control associated with an isolated intersection. The traffic demand contains two straight

movements, including east-west and north-south. The state includes the queue lengths from all

approaches as well as the elapsed green time of the current phase. The traffic control agent can

choose two actions, either remain in the current phase or shift to the next one. Cycle length was

not fixed but minimum and maximum green splits are chosen for each phase for practical

reasons. The reward function was measured by a power function of the queue length from all

approaches to discourage longer queues for some approaches. The proposed Q-learning traffic

signal controller was compared with the pretimed signal control through simulations with three

different traffic demand profiles to reflect traffic pattern variation including off-peak and peak

hours. When traffic demand is constant and near the intersection capacity, the Q-learning

11

controller performed on a par with the pretimed signal control, however, when the traffic

becomes variable, the Q-learning controller reduced system delay by 40% on average. This

research laid the foundation for implementing Q-learning in the traffic signal control field.

El-Tantawy et al. extended Abdulhai’s work by fine-tuning the parameters used in the Q-

learning traffic signal control model with a real case study in Downtown Toronto in a simulation

environment (El-Tantawy et al., 2014). The proposed model outperformed optimized pretimed

traffic signal control and actuated signal control by saving about 50% average vehicle delay.

One limitation of the Q-learning signal controller mentioned above is that the model

requires the full representation of the state collected from the intersection. If the model is

extended to the network level, this method would not be able to be computed efficiently. To

tackle this limitation, Prashanth and Shalabh (Prashanth, 2010) developed a Q-learning technique

with a function approximation method to reduce the size of inputs and significantly reduce the

computing time to get the model to converge to optimal conditions. Instead of precise

observation of queue lengths, the function approximation method abstracted the demand level

and waiting time into several categories. The proposed model was compared to the prior work

and the results show that Q-learning with function approximation provided better performance in

terms of less computing time and data storage while maintaining the control performance

(Abdulhai, 2003).

Lu et al. evaluated the performance of Q-learning for an isolated intersection with

transition curve theory to estimate the delay for each approach (Lu et al., 2008). The state is total

delay for the single intersection. The action sets include four phases with 2 seconds interval

alternation. The reward function is the same as the state, which is total intersection delay. The

proposed model was compared with the fixed signal settings and the results show a car in the

system can save 21 seconds per cycle.

Chin et al. also applied a Q-learning algorithm to an isolated intersection. The state is the

different levels of queue length and the number of phases in the signal plan (Chin et al., 2011).

Actions were defined by the green time choice of each phase in a 5-second duration. Rewards

were measured by the number of vehicles in the queue from all approaches. Various traffic

conditions including flow saturation levels were examined in the simulations. The results showed

that total delay could be reduced even in peak times compared to the optimized fixed-time signal.

2.3.2 Coordinated Intersections

Rather than focusing on improving the performance of adaptive signal control on an

isolated intersection with the help of Q-learning algorithms, some research explored its benefits

in the context of the transportation network with multiple intersections.

Balaji et al. designed a distributed multi-agent-based Q-learning traffic signal control for

improving the existing adaptive signal control in an urban arterial network in the Central

Business District of Singapore (29 intersections) to reduce the total delay and travel time (Balaji

et al., 2010). Data collected from all intersections share information with adjacent intersections

so the expected vehicle arrival patterns could be evaluated accurately. Parameters used in the

model were fine-tuned with real-time information for the reinforcement learning model.

12

Simulation results showed significant delay reduction compared to other network traffic control

systems.

Abdoos et al. explored the performance of multi-agent Q-learning for the network where

peak traffic patterns do not appear and conventional traffic signal timing does not provide an

efficient solution (Abdoos et al., 2011). Average queue length from all approaches in a fixed

cycle was used as the state representation in the Q-learning model. Cycle time of all intersections

remained the same during the optimization and the actions refer to the choice of remaining in the

current phase or changing to the next one with a fixed, small amount of green time. The reward

used in the model is inversely proportional to the average queue length from all links in the

network, normalized to the range of 0 to 1, which could reduce the weight computing time in the

Q-learning models. Fifty intersections were used to test the performance of the proposed model

and two traffic profiles were used in the simulations, showing the proposed model outperformed

the fixed signal timing plan in the same network by reducing the queue length and delay time.

However, the size of the network exerted a significant computing burden on the system, and

model improvement is needed.

Abdoos et al. developed a two-level hierarchical control model based on Q-learning

(Abdoos et al., 2014). The bottom level comprises multiple intersections from a smaller region in

the network and performs Q-learning to optimize the signal timing plan individually, while the

top-level implemented tile coding to reduce the size of the state from the bottom level and

abstract the model to a computing degree that field implementation of the proposed multi-agent

Q-learning model could be practical. A network with 9 (3x3) intersections was used to show the

performance of the proposed model and concluded that while maintaining the optimization of

signal timing for bottom level intersections and also achieving promising results in reducing

delay in the system from the top-level coordination.

2.3.3 Deep Q-learning

With the advent of the deep neural network, Q-learning has been improved and deep Q-

learning models could yield more promising results.

With high-dimensional inputs available from intersections, such as camera images from

surveillance cameras, simple Q-learning has difficulties representing the complex sensory inputs

and actions and generalizing past experiences to new situations (Mnih, 2015). To mimic the

human and animal brain learning process, a hierarchical neural network, termed deep neural

network (DNN), was introduced to handle the extremely high complexity of input data and

actions. Combined with Q-learning, deep Q-learning (DQN) was proposed for the existing Q-

learning models. The prototype of DQN tested in the Atari 2,600 games significantly

outperformed the previous Q-learning model based on pixel image data extracted from the

games.

Since the publication of DQN, its application in traffic signal control has been evaluated.

Genders and Razavi developed a DQN with experience replay for optimizing the signal timing of

an isolated intersection (Genders and Razavi , 2016). Due to the advantages of DNN which can

handle information-dense inputs efficiently, the state represented in this research contains the

discrete cell representation of the road segment. Three vectors associated with each cell,

13

including vehicle presence status, the speed of each vehicle, and the current traffic signal phase,

were used as the state, forming an information-dense input. Instead of only considering the queue

length or average vehicle delay normally applied in the Q-learning methods, this kind of

information-dense input could help the agent learn more from the complex input and generalize

the experience to the new situations better, achieving a faster convergence with less computing

time with similar parameter settings. Experience replay was another important technique used in

this research, which uses extra memory to save the past experiences, a tuple of action, state, and

reward, to train the model more efficiently. The proposed DQN for isolated intersection signal

control improved the intersection performance compared to a one-layer Q-learning model,

showing the benefits of applying DNN.

Ge et al. proposed a cooperative DQN with Q-value transfer for multi-agent-based

adaptive signal control (Ge et al., 2019). Individual intersections relied on the deep Q-learning

model to optimize their performance respectively. The cooperative mechanism was triggered

when the centralized control system combined the latest optimal performance of each

intersection and transferred the Q-value from adjacent intersections for a quicker learning

process and less computing time.

In conclusion, deep Q-learning either for a single intersection or a network with multiple

intersections can improve model performance by taking into account more complex sensory data

and actions at the expense of more computing time. However, both existing research for Q-

learning and deep Q-learning fail to consider the network with traffic incidents and hence

prevent practitioners from understanding their performance in this situation.

2.3.4 Traffic Incident Management in Traffic Signal Control

Traffic congestion can be classified into two categories: recurring and non-recurring.

Recurring congestion is due to traffic demand pattern variations throughout the day, such as

traffic demand in the peak hours that exceeds capacity. Recurring congestion tends to occur daily

and allows traffic management personnel to seek solutions. Non-recurring congestion comes

from special events, such as traffic incidents and activities that increase travel demand such as

major sports events. Traffic incidents, for example, occur in various locations, under different

traffic patterns, and rarely repeat so traffic management agencies do not have enough experience

to plan traffic signal adjustments required to deal with the real-time scenarios. (Mao, 2019).

Traffic incident management (TIM) aims to detect the incident rapidly and recover the

transportation infrastructure capacity as quickly as possible (Carson, 2010). Various tools and

strategies are proposed to facilitate traffic incident management, including manually adjusting

adjacent traffic signals to temporally increase capacity to accommodate the traffic patterns under

the impact of traffic incidents. However, due to the characteristics of traffic incidents, such as

random locations, times of day, and traffic patterns, manually adjusting the traffic signals is

almost impossible.

Logi and Ritchie proposed a knowledge-based system for non-recurring traffic

congestion supporting traffic management personnel to select integrated traffic control plans,

including traffic diversion and signal timing adjustment, to decrease traffic flow metering from

the incident locations and increase capacity for the congested approaches (Logi and Ritchie,

14

2001). This traffic congestion management tool relied on the knowledge collected from a set of

predetermined incident locations by varying the inputs, such as flow saturation degree and traffic

signal timing parameters, to increase the uncertainty of the environment to mimic the real-time

scenario. The model provides a selection of control plans for the users as well as the reasoning

logic for the target goals. However, the model did not include enough detail about how to choose

the adjacent signalization intersections, and algorithms for adjusting signal timing parameters

were not provided.

Wirtz et al. evaluated the impact of traffic signal adjustment from a preplanning

perspective for a full road closure on I-94 (Wirtz et al., 2005). Dynamic traffic assignment-based

simulation was used to compare the traffic delay in time before and after manually adjusting the

traffic signal plans near the incident locations. The results show that the preplanning of the traffic

incidents in terms of traffic signal control adjustment could reduce the traffic delay and recover

the roadway capacity faster than the original traffic signals operating in normal conditions.

Ban et al. developed a decision-making tool to determine if adaptive signal control is

better than the existing actuated signal control system in real-world situations by using a

regression model and support vector machines (Ban et al., 2016). However, this research failed

to discuss the impact of traffic incidents in the comparison.

Mao et al. proposed genetic algorithms to optimize adaptive traffic signal control under

severe incident conditions (Mao et al., 2019). This research first fine-tuned the model parameters

in a recurrent traffic condition and then implemented the improved model in non-recurring

situations. The results concluded that the proposed genetic algorithm reduces the traffic delay by

over 40%.

2.4 Summary

Reinforcement learning is advantageous compared to conventional signal control

methods. Data that is currently available to characterize the intersection or network state can

become intensive and conventional methods cannot make use of this information as efficiently as

reinforcement learning which relies on the computing capability of modern machines. For

example, reinforcement learning could directly use camera images as the inputs for the learning

model to extract useful information and output the model results. Second, reinforcement learning

can take advantage of the model-free techniques, such as Q-learning, to avoid a need to explicitly

model intersection characteristics to reduce errors of input interpretation. Third, reinforcement

learning can autonomously improve itself as long as the computer runs which leads to the

continuous improvement.

Although many research efforts have implemented reinforcement learning models in

normal traffic conditions to show its advantages over conventional signal optimization methods,

the analysis of reinforcement learning-based signal control under traffic incidents has largely

been ignored. This dissertation contributes to filling this gap by building a reinforcement

learning model, particularly the Q-learning model in traffic signal control by considering traffic

incidents in the network to improve network delay reduction performance. Two main

contributions will be included: 1. An independent incident generation and emergency vehicle

response module will be developed in a microsimulation platform to generate incidents randomly

in the network with random duration to provide the learning agent enough experience with

15

network traffic incidents. 2. The parameters of the DQN model used in the single intersection

will be optimized. The derived model will be transferred into a network with 16 intersections

(4x4) with little computing time to perform cooperative adaptive signal control to alleviate traffic

impacts of traffic incidents. This would build the foundation for evaluating the deep Q-learning

performance in the network settings in response to the random occurrence of traffic incidents in

the network.

16

17

Chapter 3. Deep Reinforcement Learning Algorithm

3.1 Introduction

In this chapter, key concepts of reinforcement learning are illustrated as well as Q-

learning and its variants for improvement.

3.2 Reinforcement Learning

Reinforcement learning is a process through which an AI agent takes sequential actions

by interacting with its environment by trial and error to solve a task, which is often modeled as a

Markov Decision Process (MDP). An MDP is a mathematical framework for modeling decision

making in a discrete and stochastic control process (Howard, 1960).

At each time step 𝑡, the agent observes a state s from the environment, where 𝑠 ∈ 𝑆 and 𝑆

represents all possible states in the environment. The agent takes an action a by following some

predetermined rules where 𝑎 ∈ 𝐴(𝑠) and 𝐴(𝑠) represents all potential actions for the agent to

perform at state s. The environment shifts to another state s^' with the impact of the performed

action and sends a numerical signal, termed reward 𝑅(𝑠, 𝑎, 𝑠′), to the agent to inform whether

the action is promising as expected. The process repeats until the terminal state is reached. The

whole process can be described in Figure 3.2-1.

Figure 3.2-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018)

State 𝑆 is a member of the set of all observations of the environment represented by the

model. Take traffic signal control as an example, if the longest queue length from each approach

is determined to be used to represent an isolated intersection, the possible states can be

represented by an integer array with a size of 4 and each integer represents the longest queue

length of each approach with only straight movement traffic demands.

The set of actions 𝐴 defines the choices of the agent to exert on the environment. In the

case of traffic signal control, the agent is the traffic signal controller. The actions the agent can

perform include extending the current phase green time or shifting to the next phase from the

available phases. For some cases, the agent can skip phases if conditions are satisfied, which is

predetermined by the modeler.

18

The Markov property states that the future is independent of the past (Markov, 1954).

Therefore, the transition function 𝑃 models the transition probability of new state 𝑆′ based on the

current state 𝑆 and chosen action 𝐴 as follows:

𝑃(𝑆′ = 𝑠′|𝑆 = 𝑠, 𝐴 = 𝑎) = 𝑝(𝑠′|𝑠, 𝑎)

In the case of traffic signal control, assume the current state is s and the signal controller

chooses to extend the current phase. If we knew the transition function, we could get a

deterministic new state. However, the transition function of a dynamic environment, such as a a

transportation network, is hard to obtain and estimation is required to solve this issue.

Reward 𝑅 is an immediate quantified signal that the agent receives from the environment

as the result of taking an action, and it directly notifies the agent if the action is good or not. In

the case of traffic signal control, if we choose to extend the current phase, but the current state

has no traffic demand for it, this environment should send a negative reward to the agent that it is

not a good choice.

To be more specific, the agent first observes its environment and senses the inputs,

termed state. The agent takes an action from its action set based on the existing information and

knowledge learned from its past experiences. The environment changes to the next state from the

previous one based on the action performed by the agent. The new environment will send a

signal, termed reward, to the agent telling the agent whether the taken action is good or not. If

the reward is good, the agent will learn it and use a method to save this joy experience so it tends

to perform the same action the next time it experiences the same state. Otherwise, the agent

would not take the same action to avoid punishment, e.g., negative rewards. For a deterministic

environment, where states and actions are limited, as long as the agent experiences all the

possible states and actions, the agent will fully understand the relationship between its states and

actions and hence achieve the maximum accumulative rewards through the process. Then, the

agent has completed the learning task.

One of the challenges of reinforcement learning is when the MDP cannot be fully

determined in terms of the transition function. Two common learning methods are used to

overcome this issue. The first one isto build a model of the MDP and find the optimal policy.

The second approach is to gain knowledge through experience (a tuple of state, action, reward,

and new state) and estimate the optimal policy.

In the finite MDP, an episode denotes a process from the beginning state to the end state.

In the case of traffic signal control, one round of simulation of a traffic demand with the signal

control process can be called one episode. During each episode, the trajectory of the

reinforcement learning process could be represented by a series of states, actions, and rewards. If

the learning process is finite and the final time step is denoted by T, the whole learning trajectory

could be expressed as:

𝑆1, 𝐴1, 𝑅1, 𝑆2, 𝐴2, 𝑅2, … , 𝑆𝑇 , 𝐴𝑇 , 𝑅𝑇

The goal of learning is to maximize the total rewards, termed as returns denoted by 𝐺𝑡 at

time step 𝑡.

19

𝐺𝑡 = ∑ 𝑅𝑖

𝑇

𝑖=𝑡

In the above equation, every reward from time 𝑡 is equally important since there is no

weighting factor for each one. However, in reality, the rewards might not be the same. For

example, which one will you choose, $1,000 now or $1,000 one year later? The answer is

definitely obvious. You will choose to get the money as soon as possible because money tends to

depreciate in the long run. The same concept was introduced to the. Discount factor, 𝛾 is used to

quantify this effect and the return can be calculated by the following equation:

𝐺𝑡 = ∑ 𝛾𝑖−𝑡𝑅𝑖

𝑇

𝑖=𝑡

The discount factor is a value between 0 and 1, inclusively. If it is set to 0, only the

immediate reward will be considered. If it is set to 1, future rewards have the same value as the

current one. Normally, the discount factor is set to be a value slightly less than 1 so we treat

future rewards as less important than the immediate ones and it will eventually decay to 0 if the

time steps are large enough.

The discounted returns can also be expressed as the following by considering that the

MDP is executed one time step at a time:

𝐺𝑡 = 𝑅𝑡 + 𝛾𝐺𝑡+1

This equation reflects the relationship between two consecutive returns. Note that all the

rewards, 𝑅𝑖, where 𝑖 = 𝑡, 𝑡 + 1, … , 𝑇, in this equation have not been observed so they are random

variables. We use 𝑟𝑡 to denote the observed reward. The randomness of 𝑅𝑡 comes from two

sources. First, the action can be randomly chosen if exploring the environment early in the

training stage. The other one is due to the randomness of the new state from the environment.

3.3 Q-Learning

Since 𝑅𝑡 is a random variable with respect to the states and actions starting at time step 𝑡,

the returns 𝐺𝑡 is also a random variable with respect to the states and actions. To calculate 𝐺𝑡, we

need a way to estimate future rewards. Q-learning is the most common algorithm to calculate

returns based on the Temporal Difference (TD) learning concept. TD learning is a combination

of Monte Carlo (MC) estimation and Dynamic Programming (DP). MC estimation allows the

agent to learn from its experience without explicitly modeling the environment (model-free) and

update estimates based on other estimates, while DP can be used to calculate the returns based on

parts of observations and parts of estimations (Sutton and Barto, 2018).

The Q-value, known as the action-function value, 𝑄𝜋(𝑠𝑡, 𝑎𝑡), is used to represent the

expectation of returns 𝐺𝑡 with respect to the state and action at time 𝑡 as:

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸(𝐺𝑡|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡)

20

Since we have 𝐺𝑡 = 𝑅𝑡 + 𝛾𝐺𝑡+1, we can express the Q-value as follows:

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸(𝑅𝑡 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡)
 = 𝐸(𝑅𝑡|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡) + 𝛾(𝐸(𝐺𝑡+1|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡))
 = 𝐸(𝑅𝑡 + 𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1))

There must exist at least one policy that leads to the maximum action-value function and

we use 𝑄∗to indicate this optimal action-value function. Whatever policy is used, we cannot

improve the action-value function by taking action 𝑎𝑡 at the given state 𝑠𝑡. Normally, we can

remove the 𝜋 from 𝑄 to simplify the expression.

𝑄∗(𝑠𝑡, 𝑎𝑡) = max
𝜋

𝑄𝜋(𝑠𝑡, 𝑎𝑡)

The best action leads to the maximum action-value function which can be expressed by:

𝑎∗ = argmax
𝑎

𝑄∗(𝑠𝑡, 𝑎𝑡)

Since we do not know the expected value of rewards 𝑅𝑡 and returns from the next time

step, we use the observed 𝑟𝑡 and 𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) to estimate the Q-value (Watkins, 1989).

Combined with the DP concept to update the action-value function based on parts of the

observations and parts of the estimations, we have the Q-learning expression (Watkins, 1989),

defined by:

𝑄∗(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼)𝑄∗(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄∗(𝑆𝑡+1, 𝑎)]

Where 𝛼 is called learning rate, a hyper-parameter that is not learned from the learning

process but determined by the modelers in advance. The learning rate determines how much the

old Q-value should be changed based on the estimated Q-value. Q-learning trains the optimal

action-value function 𝑄∗(𝑠, 𝑎). In the above equation, the second part of the equation is called

the TD target, which is a combination of the observed reward by executing one time step and the

estimated optimal Q-value from the next time step, expressed by:

𝑦𝑡 = 𝑟𝑡 + 𝛾 max
𝑎

𝑄∗(𝑆𝑡+1, 𝑎)

TD error represents the difference between the target value and the existing value,

expressed by:

𝛿𝑡 = 𝑄∗(𝑠𝑡, 𝑎𝑡) − 𝑦𝑡

Therefore, the Q-learning update equation can be expressed by:

𝑄∗(𝑠𝑡, 𝑎𝑡) = 𝑄∗(𝑠𝑡, 𝑎𝑡) − 𝛼𝛿𝑡

Using the TD learning method reduces the difference of the TD error through experience.

Once the error cannot be reduced anymore (smaller than a threshold), the learning is considered

21

to be converged and the learning process can be terminated. The Q-learning method will

converge as long as each state-action pair can be visited enough times (Watkins, 1992).

To enable the agent to explore efficiently early in the learning process, 𝜀-greedy policies

are used by giving all nongreedy actions the minimal probability,
𝜀

|𝐴(𝑠)|
, where 𝜀 is a value

between 0 and 1 and the denominator is the size of the possible actions. For greedy actions, the

probability is set to 1 − 𝜀 −
𝜀

|𝐴(𝑠)|
 . As learning proceeds when the agent has more knowledge,

the action choice will be cleverer and more efficient by lowering the probability of choosing

random actions. This is normally realized by applying 𝜀 decay methods.

3.3.1 Tabular Q-learning

For a simple environment with a small number of state-action pairs, one can use the

tabular method to solve the Q-learning problem. This method uses a table, termed Q-table, to

save the Q-value of each state-action pair during the learning process. Once the algorithm

converges, the final Q-table can be used to guide the agent to choose an action at any given state

to achieve the maximum expected returns.

An algorithm for solving the Q-learning problem by the tabular method is listed below:

Figure 3.3-1. Bus line simulation demonstration Algorithm: Q-learning

22

3.3.2 Deep Neural Network and Deep Q-learning

For a more complex environment, when the number of state-action pairs is too large to be

stored with a Q-table or when it is impossible to visit each state-action pair, the optimal action-

value function (𝑄∗(𝑠, 𝑎)) can be approximated. Hence DQN was introduced to improve the

capability of Q-learning (Mnih et al., 2015).

𝑄∗(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝑎; 𝜃)

Here 𝜃 represents the learning parameters in the DQN. The essence of DQN is the deep

neural network (DNN). DNN is comprised of at least three layers of artificial neural network, as

shown in Figure 3.3-2. Activations of one layer determines activations of the next layer and the

inputs proceed. Each layer detects a pattern from the previous layer. With a large number of

hidden layers, the model can detect more sub patterns, compared to the model with a small

number of hidden layers. If the number of hidden layers is less than what is required to extract

important features from the inputs, the model might under fit the data. Otherwise, overfitting

could occur. The number of hidden layers tends to correspond to the complexity of the input

layer, which is a hyper-parameter to be tuned by experimentation.

Figure 3.3-2. Deep neural network with three hidden layers

(https://www.ibm.com/cloud/learn/neural-networks)

 Each neural network includes a certain number of nodes and each node is called

an artificial neuron. Each neuron takes the outputs from the previous layer and outputs a number

between 0 and 1 by normalization to reduce the computing time. For example, the first layer of

the DQN is the input layer and the value of each node is only dependent on the inputs. Each node

in the hidden layers is initialized with an arbitrary weight, as a connection between the nodes in

adjacent layers, but cannot be the same for all nodes otherwise the model cannot distinguish the

importance of them. Each node in the next layer is the weighted sum of all the nodes from the

previous layer, similar to a linear regression model. Each layer will be assigned an activation rule

and if the value of a node meets this activation rule, it will be activated and its value will be

passed to the next layer as an input. All weights between the hidden layers are termed parameters

https://www.ibm.com/cloud/learn/neural-networks

23

in the DNN. The concept of “learning” is a process of updating weights associated with each

node in the hidden layers to minimize the cost function, also known as the loss function, so that

the learning model can accurately predict and maximize returns from the inputs. The number of

nodes in each hidden layer is a hyper-parameter that must be fine-tuned as is the number of

hidden layers in the DNN.

As mentioned before, the parameters in the DNN are randomly selected by initialization.

How does the model learn from the inputs? No matter what models of machine learning one

uses, one must have a predicted value and a target value. In deep Q-learning, the target value is

based on observation of one time-step reward and the estimated optimal Q-value from the next

state. The predicted value is the current Q-value updated by the Q-learning update equation. The

difference between the predicted value and target value tells the performance of the current

learning model. Gradient descent is the most commonly used method to find an improving

direction to lower the loss function and this process is called forward propagation, while back

propagation is used to update the weights in the network based on the loss function and the

weights.

The process of solving Q-learning with the DQN approximation has the following steps:

Figure 3.3-3. Algorithm: Q-learning with DQN

24

3.4 Deep Q-learning Variations

Although deep Q-learning has achieved promising results for many applications, it may

be unable to converge when implementing a neural network (McClelland et al., 1995). Two main

reasons can lead to this issue.

First, we use a transition, (𝑠𝑡,𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), in the deep Q-learning mentioned earlier to

train the model. Successive transitions can be correlated with each other and hence make the

model update highly correlated. Second, every time one transition is used to update the model, it

will be discarded and will never be used again. Experiments have shown that using consecutive

transitions without any improvement to train the DQN can result in inefficient training

regardless of training time. Therefore, experience replay was introduced (Lin, 1992).

3.4.1 Experience Replay

The purpose of implementing experience replay is to reduce the impact of correlated

transitions for the training process. To implement experience replay, a data structure which is a

list of tuples (past transitions), termed a replay buffer, is used. The size of the replay buffer, 𝑁, is

a hyper-parameter that must be tuned and cannot be trained by the learning model.

The replay buffer stores 𝑁 past transitions, a tuple of (𝑠𝑡,𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) called experience 𝑒𝑡.

The model will not begin the training until the replay buffer is filled with past experiences with

the size 𝑁. A minibatch (certain number of experiences), termed batch size, will be randomly

and uniformly selected from the replay buffer to train the model. The chosen experiences are

equally important in terms of improving the model. To maintain the size of the replay buffer, the

oldest experiences are replaced by the latest ones.

3.4.2 Target network

Another known limitation of the DQN is overestimating the Q-value (Van Hasselt et al.,

2016). Recall the TD target in DQN is defined by:

𝑦𝑡 = 𝑟𝑡 + 𝛾max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃)

The TD target is partly based on the observation 𝑟𝑡 and partly on the estimate of DQN for

the state at the next time step. Since we always choose an action to maximize the Q-value, the

model will overestimate the TD target and hence overestimate the Q-value overall. To solve this

issue, the concept of the target network was proposed (Mnih et al., 2015). Instead of using the

DQN parametrized by 𝜃, to calculate the TD target, the target network uses another DQN with

parameter 𝜃−, which will be fixed in a certain amount of time steps for the agent to have a fixed

target to learn from. The target network will be updated every 𝐶 time steps, a hyper-parameter.

The loss function associated with implementing the target network can be defined as follows to

minimize the mean square error:

𝐿𝑡(𝜃𝑡) = 𝐸[(𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡
−) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡))2]

25

Gradient descent is the common method to reduce the loss function by following the

direction of the derivative of the loss function with respect to 𝜃𝑡:

𝜕𝐿𝑡(𝜃𝑡)

𝜕𝜃𝑡
= −𝐸[(𝑟𝑡 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡

−))
𝜕𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡)

𝜕𝜃𝑡
]

With the combination of experience replay as mentioned earlier, random samples from

the replay buffer will be extracted to update the DQN parameter, termed stochastic gradient

descent to break the correlation of successive experiences.

3.5 Summary

The DQN with experience replay and target network was introduced by Minh (2015) and

will be adopted to train the traffic signal controller for the single intersection scenario in this

research.

The pseudocode of the algorithm used in this dissertation is listed below:

26

Figure 3.5-1. Algorithm: Deep Q-learning with Experience Replay and Target Network

27

28

Chapter 4. Simulation Preparation

4.1 Overview

Simulation is a primary method by which municipal traffic engineers establish

confidence in innovative traffic signal timing concepts. This confidence is ordinarily established

by characterizing the field network, collecting traffic demand data and testing potential signal

retiming policies to analyze network performance (e.g., average vehicle delay). In recent years,

as the development of reinforcement learning methods has evolved, a goal-oriented machine

learning process can be applied decreasing analysis effort. AI traffic signal controllers have been

studied and a variety of control techniques have been tested through traffic simulations.

The core concept of reinforcement learning algorithms is to explore the relationship

between the agent’s actions and its evolving environment by trial-and-error methods. Feedback

from the environment measured by so-called rewards can help the agent adjust its behavior so as

to achieve more rewards in the future.

The next generation traffic signal control system is far from the field application since

many aspects, including traffic incidents, have not been tested thoroughly. One major reason is

that collecting field network data associated with traffic incidents and validating the proposed

models are expensive and time-consuming. For example, collecting historical traffic incident

characterizations and emergency vehicle response data are rarely feasible for most researchers,

who might want to focus more on the development of traffic signal retiming.

The agent can learn from interaction with the environment regarding impacts of traffic

incidents in the network. However, a large amount of experience is required to enable the agent

to optimally respond to all possible incident situations so implementation of an AI traffic signal

without sufficient experience would be disastrous. An implemented AI traffic signal should

perform at least better than existing signal timing plans with/without traffic incidents.

A more inexpensive and practically feasible traffic simulation tool with traffic

incident/response and AI signal control module would be helpful in promoting a smarter more

robust traffic signal control system. Therefore, we provide a Python extension based on SUMO

to allow micro-simulation of an AI signal control system in a network experiencing incidents

randomized in both time and space.

We begin by highlighting some existing efforts in developing the next generation traffic

signal control systems and available simulation software with traffic incident/response

capabilities. This is followed by the extraordinary features of SUMO and the framework we used

to extend SUMO with a traffic incident/response module coded in Python. Experiments are

presented to show the use of the extended module.

4.2 Literature Review

Traffic signal retiming plays a significant role in improving the network performance

when traffic incidents occur. Due to the complicated inputs and short period of time for making

decisions, traffic simulations have been commonly adopted to test potential traffic signal

29

retiming policies before field implementation. Liu and Hall proposed a Windows operating

system-based computer simulation software for simulating highway traffic incidents as well as

emergency vehicle dispatching (Liu and Hall, 2000). Traffic delay is the only factor considered

in the model and queue spill back effect is not simulated. It could help researchers and

practitioners to broadly understand the impact of traffic incidents and determine the emergency

dispatch strategies as needed. However, there are several key limitations. It only focused on the

highway so local networks are not simulated. Users cannot simulate traffic signals in the

software, which limits the usage of this simulation tool.

Kaan and Bartin developed a complete traffic incident simulation tool in Siman language

to generate incidents in the network and to send emergency vehicles to respond accordingly

(Kaan and Bartin, 2003). Real network and real-world data were collected to test their proposed

simulation tool. This work allows users to implement different TIM strategies to reduce the

impact of traffic incidents in the network. However, the programming language Siman is rarely

used in the data scientist and machine learning modeling field these days since most of the

advanced machine learning methods are written in Python. It will prevent users from effectively

testing their TIM strategies which will include the latest machine learning technologies.

Ozbay et al. proposed Rutgers Incident Management System (RIMS) to simulate traffic

incidents and to test various incident response strategies based on the cell transmission model

developed by Daganzo (Ozbay et al., 2009). The results indicate that computer simulation

methods could significantly reduce the traffic delay triggered by a traffic incident in the network.

However, this tool lacks traffic signal timing, limiting the usage of it.

Huang and Pan proposed to use a GIS engine to facilitate traffic incident and incident

response optimization management. The idea was tested with real cases and commercial traffic

simulation software (Huang and Pan, 2007).

Wirtz et al. proposed a simulation-based method to test traffic incident management

strategies in Visual Interactive System for Transport Algorithms (VISTA), a dynamic traffic

assignment (DTA) embedded tool (Wirtz et al., 2005). The DTA offers the opportunity for

modelers to accurately estimate the impact of the traffic incidents by considering the dynamic

change of road capacity and link travel time, where the static traffic assignment models fail to

perform. Network and traffic demand were extracted from the Chicago Area Transportation

Study and various incidents in terms of locations and durations were simulated around I-94.

Eleven surrounding traffic signals were manually adjusted based on Webster's formula to split

the green time to accommodate the changed traffic flow pattern once the incident occurs.

Incident response actions of closure of a certain number of ramps upstream of the incident

locations were analyzed to find the best traffic delay alleviation strategies. The idea of this

research is to preplan the traffic incident management strategies and take corresponding incident

response actions once the incident occurs. This method might be helpful when the incident

locations are fixed and traffic demand patterns could be predicted. However, in reality, due to the

complexity of the network and scale of inputs, including traffic demand, network characteristics,

and existing traffic signal control methods, it is hard to find the optimal traffic incident strategies

within a short period of time without human interactions.

30

Reinforcement learning methods have been adopted in the field of traffic signal retiming.

The main advantage of the reinforcement learning methods is to allow use of deep neural

networks to perform approximation of inputs from the environment and estimate cumulative

long-term expected rewards with a model-free method. To achieve the accuracy of high-level

function approximation, large amounts of data need to be prepared.

Common limitations of existing traffic incident simulation tools are:

• The tools have not been maintained and published so that other users find it hard

to replicate the experiments or design new experiments to test traffic signal

control strategies. A free and open-source simulation software is needed.

• The existing tools are not able to generate a test network and associated traffic

demand so as to minimize the costs of preparing the base scenario. Most existing

experiments use a single or multiple real data points to simulate the traffic

incident environment. This scale of inputs is not enough to train the machine

learning models.

• The functions in the existing tools are not comprehensive enough to test proposed

strategies from different angles, including vehicle rerouting and traffic signal

retiming.

• The existing tools are not available for multi-cross platforms, preventing the use

of high-performance computing advantages these days.

• The simulation environment is closed, meaning it is hard for the users to

customize and extend.

• Measurement of Effectivenesses (MOEs) are limited and do not catch up with the

network performance measurement nowadays when vehicle emission and fuel

consumptions are required to be considered.

• Manually generating test networks, traffic demand, and incident occurrence is not

efficient for training machine learning algorithms for traffic signal retiming.

There is a need for a simulation testbed that incorporates the traffic signal retiming and

traffic incidents/response system to develop a more robust AI traffic signal control system. The

purpose of this work is to provide a highly automated process to generate random traffic

incidents in the given network as well as the corresponding emergency service vehicles as an

extension based on the existing popular microscopic traffic simulation software SUMO. Key

components in the extension include random traffic incident generation, traffic incident

detection, emergency service vehicle generation, and emergency service vehicle dispatching. By

conducting simulations in this kind of setting, new traffic signal control methods considering the

traffic incident impact in the network can be tested and tuned as preparation for field application.

4.3 Simulation Platform

SUMO simulation requires at least two files, including a network file and a route file.

The network file defines the road network, including intersections, edges, and connection rules.

The traffic signals can be also included in the network file. There are several common types of

traffic signals provided in SUMO, including pretimed, actuated, adaptive, and other more

31

advanced (self-organized traffic signals) control frameworks. Detectors are also provided with

the user's definition, including loop, area detector, etc. Users can also customize the traffic

control algorithms as needed, including the reinforcement learning traffic signal control methods.

4.3.1 Network

Another benefit of using SUMO is that it provides a network generation library

(NETGENERATE) so that users can easily build a grid-like network. This library allows users to

determine the number of intersections in horizontal and vertical directions in the network. Users

can also choose the number of lanes and length of each approach for each intersection.

Pretimed traffic signals can also be added to the target intersections in the network. The

tool provides a way to set up the cycle length, left turn protection phases, green split, yellow

time, and all red time durations to mimic the practical applications as needed.

4.3.2 Traffic Demand

SUMO provides another important and useful Python script to prepare traffic demand

randomly based on the developed network if users cannot get access to any trip information of

the network. It is convenient to the users who focus on evaluating a more generalized traffic

signal control algorithm so they do not have to spend time collecting field data. The tool allows

users to set the ratio of internal and external traffic demand as needed. In this study, we assume

that all traffic demand is external traffic so the ratio between the through and internal traffic

demand is set to an extremely large integer, meaning all the traffic is starting and ending from

the fringe of the network. The trip table will be saved into a XML file so the experiments can be

repeated.

Another commonly used way in SUMO to generate the traffic demand is to dynamically

add vehicles to the system. The problem with this method is that the generated traffic will

calculate the shortest path in the network dynamically so it might be able to detour around the

incident location and hence decrease the traffic impact.

In order to isolate the impact of traffic signal retiming provided by the AI traffic signal

agent, we need to lock the traffic routes so that when there is a traffic incident in the system, the

traffic would not shift routes. This is not the case in reality where travelers would shift routes to

avoid being stuck in a long queue in the network. However, we assume that no travelers would

change routes for two reasons. First, the benefits of optimizing the signal plan based on the AI

traffic signal agent need to be calculated. If the travelers are allowed to shift routes, the net

benefits of signal plan optimization are difficult to quantify. The other reason is the ratio of

travelers who shift routes and remain on the original ones relate to the traffic demand pattern and

characteristics of intersections, which are hard to quantify for this research.

The same thing should not happen to the traffic demand generated later after the incident

time. Therefore, this paper decided to use the first method mentioned above and edit the original

traffic demand file (XML format) to add traffic incidents, including incident locations, incident

durations, and emergency vehicle response.

32

4.3.3 Incident Generation

SUMO provides three methods to simulate traffic incidents in the network: 1. Stop a car

at a designated location for a specific period; 2. Reduce the road capacity of associated edges; 3.

Reduce the design speed of the associated road edges. The easiest and more realistic manner is

the first one since it will require the route file to be edited with one line of code to reflect the stop

of an incident vehicle. Figure 4.3-1 shows the added traffic incident information in the route file.

In this example, the vehicle with ID 2 will stop at Lane “C2C1_1” 20 meters from the end of this

lane for 1500 seconds.

Figure 4.3-1. Settings of Stopping Vehicle in Route File

4.3.4 Emergency Service Vehicles Simulation in Sumo

In addition to the incident vehicle generation, we also provide a way to generate

emergency service vehicles in the simulation once the traffic incident is detected.

During normal traffic movement, no vehicle will stop at a location for a long period of

time, a user-defined time threshold (e.g., 5 minutes). Once the system has detected that a vehicle

is stuck in the network for more than a specific period of time, the emergency service vehicles

will be generated and dispatched. Users can choose the number of emergency service vehicles to

reflect the reality process, such as multiple police cars and EMS vehicles.

We can generate multiple individual vehicles to mimic the police and EMS vehicles, but

the problem of this is some of the vehicles might not be able to reach the incident location due to

associated traffic congestion. To overcome this issue, we decided to edit the emergency vehicle

length to mimic multiple emergency service vehicles being needed.

The default length of per emergency service vehicle is 7.5 meters, including 5 meters for

the vehicle length and 2.5 meters for the clear space. For example, if 3 police cars and 1 EMS

vehicle are required to deal with a traffic incident, that is a total of 4 emergency service vehicles,

a vehicle with length of 30 meters, will be generated and dispatched in the simulation and hence

it will block 30 meters of the incident lane to reflect the combination impact of multiple

emergency services vehicles in practice.

In SUMO, there are several important concepts of network components. Edge defines the

approach of the intersection. Edge includes a certain number of lanes. The lanes are named based

on the edgeID and lane index.

The route of the emergency service vehicle is defined before dispatching it into the

network. To generalize the implementation of emergency vehicle response, we randomly select

an origin for its route from the fringe of the network. The destination of the route is the incident

33

edge. During the incident response service, the emergency vehicle will occupy the lane next to

the incident vehicle. For example, if the incident vehicle stops at the middle lane of an edge and

there are 3 lanes for this edge, the emergency service vehicle will randomly stop in either the

first (straight and right turn lane) or the third lane (left turn lane in our experiment) of the same

edge.

The emergency vehicle will arrive at the incident location after the incident vehicle has

been detected and the travel time from its origin to the incident location. And then the emergency

service vehicle will stop for the same duration as the incident vehicle stops. Once the emergency

service vehicle completes its service it will finish its route and reach the intersection of the

destination edge.

In Traci, the function to generate a route based on the origin and destination edges is

traci.simulation.findRoute(origin_edge, destination_edge). Once the two parameters are given,

the function will find a feasible and probably the shortest route in the network. The route

information could be called to show the edges used in this route by calling the route.edges

property.

To dispatch the emergency service vehicle in the system, the function

traci.route.add(routeID, route_edges) needs to be called to add the edges of the emergency

service vehicle route into the route file. The emergency service vehicle then can be added to the

route file by calling traci.vehicle.setStop(vehicle_id, route_edges, stop_lane_index,

stop_duration). Users can customize the traffic signal to allow emergency service vehicle priority

so that it can arrive at the incident location as quickly as possible.

For a two-lane edge, the whole edge will be blocked by both the incident car and

emergency service vehicle, while for a three or more-lane edge, two lanes will be blocked and its

capacity will be reduced significantly. We examined the impact of only considering the incident

vehicle without the emergency service vehicle in the system and the delay impact is significantly

different, showing that having the emergency service vehicle in the system should be more

realistic. The pseudo code for the simulation is shown in Figure 4.3-2.

Figure 4.3-2. Pseudocode for the Simulation Framework

34

4.4 Simulation Procedure

Once the network and traffic demand are prepared, the customized incident Python script

will read the route XML and randomly select a vehicle to generate a traffic incident. Then the

simulation starts and once the incident vehicle is detected in the network stopping for more than

5 minutes (a user defined threshold), emergency service vehicles will be generated by calling

DISPATCH_EMERGENCY_VEHICLE() function. The default color of the emergency vehicle

is set to be blue and the length of it is determined by the number of emergency service vehicles

needed for this incident multiplied by 7.5 meters. Therefore, the incident vehicle will be shown

in red and the emergency service vehicle will be shown in blue when viewing the animation of

the simulation process.

The developed incident generation and emergency service vehicle response Python script

is published in the following GitHub repository. The Networks directory includes a 4x4 grid

network generated by calling the NETGENERATE command aforementioned, as shown in

Figure 4.4-1. The main functions of incident generating and emergency service vehicle response

are in incidentRoute.py located in the root directory of this GitHub repository.

Figure 4.4-1. 4x4 Grid Network with Traffic Incident

https://github.com/Flexing920/dissertation/tree/main/tests/tl/dissertation

35

Figure 4.4-2. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles

In Figure 4.4-1, the 4x4 grid network is shown as well as the incident vehicle and

emergency service vehicle. Figure 4.4-2 shows a larger view of the incident vehicle (RED) and

emergency service vehicle (BLUE).

The current Python script is for single traffic incident preparation. Users could extend it

to include multiple incidents as needed.

4.5 Implementation

A 4x4 grid network can be created by running the NETGENERATE module provided by

SUMO to generate a grid-like network with user settings. All the parameters as well as their

meaning can be found in Appendix 1.

Traffic demand associated with the 4x4 grid network can be prepared by running the trip

generating Python script in SUMO. Some of the key parameters that users can define include the

ratio of internal and external trips, hourly traffic flow, and turning ratios. The commands used in

this paper can be found in Appendix 2 as well as the explanation of the parameters.

Traffic demands are all external traffic, meaning the origins and destinations of all trips

are at the network fringe.

Intersections are all controlled by pretimed traffic signals with 4 phases, including east-

west straight movement phase, east-west left turn phase, north-south straight movement phase,

and north-south left turn movement phase. Right turn movement is allowed and included in the

straight movement phases. Cycle time for every intersection is the same, 90 seconds. The cycle is

split 50%-50% between the east-west and north-south directions with the straight/right

movement receiving 27 seconds and the left turn phase receiving 13 seconds with both yellow

clearance intervals 3 seconds and 2 second all reds. More traffic signal setting information could

be found in the network file.

36

To add random incidents in the created network, the python script must be called. Several

inputs need to be defined before calling the extension, Including the network XML file provided

by the NETEDIT function, the traffic demand XML file produced by calling the randomTrip.py

tool provided by SUMO, and the corresponding SUMO configuration file.

The traffic incident will be generated before the simulation starts by randomly selecting a

vehicle from the first one third of the simulation period. The vehicle must have a route crossing

the center of the network so that the stopped lane is not located in the fringe of the network to

prevent vehicles from entering the network. The traffic incident will last for a random period of

time from 15 minutes to 30 minutes with a 5-minute increment. Once the vehicle reaches the

incident location, it will fully stop and block the traffic behind.

The traffic simulation system will record all vehicles' stop duration in the network. Once

it detects one vehicle stopped for more than 5 minutes (a tunable parameter) in the same location,

it assumes a traffic incident exists.

A number of emergency medical service and police cars will be generated as a single

long length vehicle to abstract their impact. The origin of this emergency vehicle will be a

random location along the network fringe and its destination is the incident location. The

emergency vehicle will be stopped for the same amount of time as the incident vehicle . For a

two-lane edge, the incident vehicle and emergency vehicle will fully block the road.

The extension could be customized easily if multiple incidents are required for any

scenario.

4.6 Summary

This work provides a convenient Python script for SUMO extension. Rather than only

considering the traffic incident impact in the network, this research also provides a way to

simulate the emergency service vehicle impact in the network. As shown in the experiment

results, the combination impact of traffic incidents and corresponding emergency service vehicle

response could cause significantly more delays than only considering the traffic incident itself in

the network. This tool will help researchers to provide more realistic traffic incident management

strategies to reduce the impact of traffic incidents and optimize the traffic management methods,

including vehicle rerouting and traffic signal retiming.

37

38

39

Chapter 5. Single Intersection Deep Reinforcement Learning Traffic

Signal Control

5.1 Overview

This chapter employs the proposed deep reinforcement learning signal control algorithm

to a single intersection simulation scenario, highlighting the potential advantages of using deep

Q-learning for the traffic signal controller problem. Additionally, to assess the performance of

the proposed algorithm, we compare it against three traditional non-learning traffic signal control

algorithms, including Max-pressure, Webster's, and Uniform. To evaluate the effectiveness of

the traffic signal controllers, we utilize measures of effectiveness (MoEs) such as system travel

time, queue length distribution, and delay distribution of vehicles during the simulation.

The subsequent sections of this chapter are structured as follows. The second section

provides an introduction to the deep Q-learning algorithm, which is utilized along with three

traditional non-learning traffic signal controllers. The simulation platform settings and code

preparation are then detailed. In the Results section, a comprehensive analysis is conducted to

compare the performance of the learning and non-learning traffic signal control algorithms. The

final section provides a discussion and concluding remarks on the applicability of the deep Q-

learning algorithm to the single intersection scenario.

5.2 Deep Q-Learning Model

As Chapter 3 explains, Q-learning is a type of reinforcement learning that does not rely

on a pre-existing model and allows for learning the value of actions in a given state. In certain

situations, a Q-table can be used to explore all possible state and action combinations, allowing

the agent to develop a coherent policy that maximizes cumulative rewards once the model has

reached convergence. However, for traffic signal control problems, where the number of states

and action pairs is exceptionally large, a Q-table may not be practical.

To provide an example, let's consider a single intersection where the number of states and

action pairs is dependent on factors such as the number of vehicles in each lane, the number of

lanes per approach, the capacity of each lane, and the signal phasing patterns. When dealing with

multiple intersections, it is preferable to have an optimized system solution. Instead of obtaining

actual rewards for each state-action pair, we can use a deep neural network (DNN) to estimate

the performance of an action in a given state. This combination of Q-learning and DNN is called

the deep Q-network (DQN). In this section, we will introduce our DQN, which includes defining

the state, action, and reward, as well as specifying the DNN and associated hyperparameters.

The key components of reinforcement learning are:

• Agent: The entity that interacts with the environment and learns to take actions

based on the observed states to maximize the reward.

• Environment: The external world in which the agent interacts and receives

feedback in the form of rewards.

• State: The current configuration of the environment that the agent observes.

40

• Action: The decision made by the agent to transition from one state to another.

• Reward: The feedback signal that the agent receives from the environment after

taking an action. The reward represents the immediate benefit or cost of the action

taken by the agent.

• Policy: The strategy that the agent uses to determine its actions based on the

current state of the environment.

5.2.1 Agent

In machine learning, an agent is an entity that interacts with an environment to achieve a

specific goal. The agent can receive observations or data from the environment, take actions

based on that information, and receive feedback or rewards that indicate how well it is achieving

its goal. The agent's objective is typically to learn a policy, which is a mapping from

observations to actions, that maximizes its long-term cumulative reward in the environment.

Agents can be implemented using a variety of techniques, including reinforcement learning,

supervised learning, and unsupervised learning, depending on the nature of the task and the

available data.

The traffic signal controller is represented as the agent in DQN, which aims to achieve

the maximum cumulative reward by interacting with the intersection and traffic demand through

its learned policy.

5.2.2 Environment

The environment comprises everything except the agent, such as the geometry of the

intersection, vehicle arrival rate, queue lengths, delay, and other factors that are beyond the

agent's control. In our case, the intersection and its characteristics serve as the environment that

the agent interacts with during the learning process.

5.2.3 State

The inputs in DQN are represented by the state, denoted as 𝑠𝑡, which belongs to the state

space 𝑆 and 𝑡 ∈ 𝑇, where 𝑇 represent the time period for the learning process. 𝑇 is fixed in our

experiment for the single, isolated intersection, meaning our learning process is a finite Markov

decision process.

A suitable state must capture the essential features of the environment. In DQN, the state

should include essential information from the intersection that the traffic signal controller can

learn to improve its policy. Common measures used for state representation in traffic signal

control include queue length, queue density, delay, vehicle waiting time, and their variations and

combinations. Some more advanced states can be represented by the image of the intersection

with vehicle positions which allows the model to extract information that humans might not be

able to detect. However, more advanced and complicated inputs are difficult to obtain in

practice.

By considering the complexity and ease of implementation of algorithms in practice, we

choose normalized density of each lane (both incoming and outgoing), normalized queue length

41

of each lane (for both incoming and outgoing), and the most recent green phase as the state. The

reason for normalizing the density and queue is to constrain the value to the range between 0 to

1. The normalized values for the inputs of machine learning models will generally decrease the

training time to get the model converged (Goodfellow et. al, 2018).

Normalized density, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙∈𝐿, is defined by the ratio between total vehicles and lane

capacity, where 𝑙 denotes the lane and 𝐿 represents a set of all incoming and outgoting lanes

associated with the intersection. Normalized queue, 𝑞𝑢𝑒𝑢𝑒𝑙∈𝐿, is calculated as the ratio between

the number of stopped vehicles and lane capacity. One-hot encoding of the most recent green

phase is applied, plus the all red phases.

To summarize, the state in our single intersection case can be defined as below:

𝑠𝑡 = [𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙1
, … , 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑛

, 𝑞𝑢𝑒𝑢𝑒𝑙1
, … , 𝑞𝑢𝑒𝑢𝑒𝑙𝑛

, 𝑝ℎ𝑎𝑠𝑒1, … , 𝑝ℎ𝑎𝑠𝑒𝑚]

Where 𝑛 denotes the number of incoming and outgoing lanes and 𝑚 represents the total

number of green phases and one all red phase, subject to 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙 ∈ [0, 1], 𝑞𝑢𝑒𝑢𝑒𝑙 ∈ [0, 1],
𝑝ℎ𝑎𝑠𝑒𝑖 = [0, 1], and ∑ 𝑝ℎ𝑎𝑠𝑒𝑖 = 1𝑚 .

5.2.4 Action

Action is defined as the choices that the agent can make and hence it is the phases that

can be selected in our single intersection scenario. Action is represented by 𝑎𝑡 ∈ 𝐴, where 𝑎𝑡

denotes the action being chosen at time 𝑡 and action space 𝐴 is a set of all selectable phases

(green phases and the all red phase). We have four green phases in our single intersection

scenario, including East-West straight movement green phase with unprotected left-turn green

(𝑝ℎ𝑎𝑠𝑒𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡−𝐸𝑊), North-South straight movement green phase with unprotected left-turn

green (𝑝ℎ𝑎𝑠𝑒𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡−𝑁𝑆), East-West protected left-turn green phase (𝑝ℎ𝑎𝑠𝑒𝐸𝑊−𝑙𝑒𝑓𝑡−𝑡𝑢𝑟𝑛), and

North-South protected left-turn green phase (𝑝ℎ𝑎𝑠𝑒𝑁𝑆−𝑙𝑒𝑓𝑡−𝑡𝑢𝑟𝑛).

Since we randomly generate demand for the experiment including random ODs, we

include two protected left-turn phases into the action space. For regular cyclic traffic signal

controllers, the pattern will be fixed so left-turn green phases will be applied, while for the DQN

and Max-pressure controllers, left-turn phases might be less used due to the traffic pattern.

In the DQN mode, each chosen phase will be up for at least 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If the next

chosen phase is the same, it extends the current phase by adding another 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If a

different phase is selected, the corresponding amber phase will be chosen and hence all red time

thereafter, where 𝑡𝑦𝑒𝑙𝑙𝑜𝑤 = 3 seconds and 𝑡𝑟𝑒𝑑 = 2 seconds are fixed.

5.2.5 Reward

Reward at time 𝑡, 𝑟𝑡, serves as a numeric signal to train the DQN so the agent can

quantify its action given a state and improve its performance by choosing the right action for

maximizing long-term value measured by the reward.

42

As summarized in Chapter 2, commonly used reward representations include total delay

and its variation, total stops, total queue length and its variation, and some combinations of those

measurements. A number of research efforts have chosen total delay or its variation as the

reward based on the assumption that ultimately, the system level performance will be measured

by the total delay, so using the same measurements as the reward will directly guide the agent to

improve its performance.

However, total delay requires knowing each driver’s desired speed and their actual speed

through the network so that the difference could represent total delay. Taking into account this

obstacle when implementing the DQN algorithm, we use a queue related reward in our model.

There are multiple forms of using queue length as the reward representation, and we use the

quadratic form of queue difference between each incoming lane and outgoing lane, as shown

below:

𝑟𝑡 = ∑ 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡−1,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖

2

𝑛

− ∑ 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖

2

𝑛

𝑇ℎ𝑒 𝑡𝑒𝑟𝑚 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖
 denotes the number of vehicles stopping in 𝑖𝑡ℎ

incoming lane. The quadratic form is used to penalize the long queues to avoid having unfair

phase selection for those vehicles from the minor demand approaches. We also use the previous

sum of squared queue length minus the current one so if an action reduces the value, the reward

is positive and vice versa.

The goal of the agent is to maximize the cumulative rewards, defined by the following

formula:

𝑅 = 𝑚𝑎𝑥 ∑ 𝑟𝑖

𝑇

𝑡=0

5.2.6 Policy

A policy is a function that maps the current state of an agent to an action to be taken by

that agent. The policy defines the agent's behavior and determines what actions the agent should

take in response to the environment.

There are two main types of policies in reinforcement learning: deterministic policies and

stochastic policies. A deterministic policy maps each state to a single action. For example, a

deterministic policy might always output "move forward" when the agent is in a certain state. A

stochastic policy, on the other hand, maps each state to a probability distribution over actions.

For example, a stochastic policy might output a probability of 0.7 for "move forward" and a

probability of 0.3 for "turn left" when the agent is in a certain state. The agent then selects an

action according to the probabilities given by the policy.

The goal of reinforcement learning is to learn an optimal policy that maximizes the

agent's long-term reward. This is typically done by using a trial-and-error approach, where the

agent explores the environment and updates its policy based on the observed rewards. In our

43

case, the policy represents the weights, 𝜃, of the DNN which will help to choose an action based

on a given state to maximize the cumulative rewards. Once the learning process is done, we can

use the value saved in 𝜃 to approximately calculate the best actions we should choose given a

state. For every step, if we follow this guidance, we will maximize cumulative rewards and

hence find the best policy to choose a phase given a state.

5.2.7 DNN Structure

A deep neural network (DNN) is a type of artificial neural network (ANN) that is

designed to model complex relationships between inputs and outputs by using multiple layers of

processing nodes, or neurons, to learn hierarchical representations of the data. DNNs are

composed of layers of interconnected nodes, with each node in a layer receiving input from the

previous layer and outputting to the next layer. The nodes use nonlinear activation functions to

transform their inputs and create a nonlinear relationship between the inputs and outputs. By

stacking multiple layers of these nodes, a DNN can learn to extract increasingly abstract and

complex features from the input data. DNNs have been applied successfully in a wide range of

machine learning applications, including image and speech recognition, natural language

processing, and reinforcement learning.

DNNs consist of multiple layers of interconnected neurons that perform increasingly

complex transformations on the input data. Common layers in DNNs include:

• Input Layer: The input layer receives input data and passes it to the next layer in

the network. It typically does not perform any computation on the input. In our

case, this is defined by the inputs collected from the intersection and can be used

by the controller to learn.

• Hidden Layers: Hidden layers process the input data and perform non-linear

transformations to extract features and learn patterns in the data. The number of

hidden layers and the number of neurons in each layer can vary depending on the

complexity of the problem being solved. This will help the controller to analyze

the inputs collected from the intersection for various patterns to facilitate the

learning process.

• Output Layer: The output layer produces the final output of the network. The

number of neurons in the output layer depends on the task being performed. For

example, in a binary classification task, the output layer would have a single

neuron, whereas in a multi-class classification task, the output layer would have

multiple neurons. This will form a list of phases with its estimated value from the

model to determine which phase has the maximum cumulative rewards to be

chosen for the next phase if exploitation is applied. Otherwise, a random phase

will be chosen for the next phase.

A deep neural network represents a neural network structure with one input layer, one

output layer, and multiple middle layers, called hidden layers. The size of the input layer is the

same as the size of the state. The size of the output layer is equal to the number of actions in the

44

action space, which is 4, the number of green phases in our model. The size of the hidden layers

is determined by the number of layers and number of nodes for each layer. The number of nodes

for each layer is fixed to be 64. The number of layers is a hyperparameter which will be tuned.

Every layer is fully connected, meaning each node will be passed as an input for the next

layer. Each connection between two nodes is represented by a single value in our DNN

parameter, 𝜃. Each node can be seen as a multiple regression model that includes all the node

values from the previous layer and is weighted by the parameters in 𝜃 corresponding to this

layer. The weighted sum will be reculated by the chosen activation function.

The activation function is a mathematical function that introduces non-linearity to the

output of a neuron. It determines the output of a neuron based on the weighted sum of its inputs.

Some common activation functions used in ANNs include:

• Sigmoid function: The sigmoid function maps any input value to a value between

0 and 1, making it useful for binary classification problems. However, it suffers

from the vanishing gradient problem, which can make training deep networks

difficult.

• ReLU function: The rectified linear unit (ReLU) function outputs the input

directly if it is positive, and outputs 0 if the input is negative. ReLU has become a

popular choice in deep learning due to its simplicity and ability to avoid the

vanishing gradient problem.

• Tanh function: The hyperbolic tangent (tanh) function maps input values to a

range between -1 and 1, making it useful for regression problems. It is similar to

the sigmoid function but has a steeper gradient, which can improve the

convergence of the training process.

• Softmax function: The softmax function is commonly used in the output layer of a

neural network to produce probabilities for each class in a multi-class

classification problem. It ensures that the output probabilities sum to 1.0.

In our case, ReLU function is applied to be the activation function for each hidden layer.

Q-learning is a well-known reinforcement learning algorithm that is used to find an

optimal policy for an agent in an environment by learning the action-value function. However,

traditional Q-learning can face limitations when dealing with high-dimensional state and action

spaces.

DNNs, on the other hand, are very good at approximating complex non-linear functions,

making them a powerful tool for function approximation in reinforcement learning problems

with high-dimensional state and action spaces.

By combining Q-learning with DNNs, we can approximate the action-value function with

a deep neural network, a technique known as the deep Q-network (DQN). The DQN algorithm

can learn directly from raw high-dimensional sensory inputs, such as images, without requiring a

45

manual feature extraction step. This can greatly simplify the design process, and enable the agent

to automatically learn and extract relevant features from the environment.

Overall, DQN, combining Q-learning with DNNs, can lead to better performance and

more efficient learning in complex reinforcement learning tasks with high-dimensional state and

action spaces.

5.3 Variations of DQN

One of the limitations of DQN is its susceptibility to overestimation of Q-values,

especially in the presence of noisy data. This can occur when the DNN overgeneralizes from the

limited training data, resulting in overestimation of Q-values for some state-action pairs. Another

limitation is the tendency of DQN to overfocus on specific state-action pairs, leading to

suboptimal policies. This can be addressed using various modifications to the basic DQN

algorithm, such as experience replay, double DQN, dueling DQN, and distributional DQN,

which aim to improve stability, reduce overestimation, and encourage exploration. Two

advanced techniques will be used in this research to improve the performance of DQN, including

experience replay and double DQN.

5.3.1 Experience Replay

Experience replay is a technique used in deep reinforcement learning to improve the

efficiency and stability of the learning process. The basic idea is to store experiences (tuples of

state, action, reward, next state) in a replay buffer with size 𝐵, which is essentially a large dataset

of past experiences. During training, some of the experiences, determined by the variable called

batch size (𝑏), are randomly sampled from the replay buffer and used to update the deep neural

network, instead of using only the most recent experience. This has several benefits, such as

reducing the correlation between consecutive experiences, making the learning process more

stable, and enabling the reuse of experiences, which can lead to more efficient use of data.

Experience is defined as a tuple of current state, action, reward, and next state,

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). The experiences that aid the agent in learning from its interaction with the

environment are stored in a fixed-size memory buffer. When the buffer is full, the oldest

experience is replaced with the newest to retain the most recent experiences. In an ideal scenario,

all past experiences could be used to calculate the loss function for improving the model, but this

would significantly slow down the learning process. Instead, a batch of experiences is randomly

and uniformly selected from the buffer for updating the DQN. The size of the batch is a

hyperparameter that requires tuning.

5.3.2 Double DQN

Double DQN is an extension of the original DQN algorithm that addresses the

overestimation issue that can occur in Q-learning methods. In traditional Q-learning, the

maximum action value for a given state is calculated using the same Q-network used to select

actions, which can lead to overestimation of the action values. Double DQN uses two separate

Q-networks to calculate the action values: one network is used to select actions, while the other

is used to estimate the action values. The second network, called target network, is used to

evaluate the action values by taking the maximum action value from the network used to select

46

actions. This approach reduces the overestimation issue that can occur in Q-learning and

improves the stability and accuracy of the Q-values.

Target network update refers to periodically updating the weights of a separate neural

network, known as the target network, that is used to estimate the target Q-values in the Q-

learning update.

During training, the Q-learning update involves calculating the target Q-value for each

action based on the current estimate of the Q-values and the observed reward and next state. In a

standard DQN, the same neural network is used to estimate the current Q-values and the target

Q-values. However, this can lead to instability in the training process, since the Q-learning

update involves using the same neural network to generate the target and the prediction, leading

to a feedback loop.

To address this, the target network is updated periodically (e.g., every N steps) by

copying the weights of the current Q-network to the target network. This provides a more stable

estimate of the target Q-values and prevents the feedback loop. The target network is not used

for action selection during the training, only for estimating the target Q-values.

The DQN with experience replay and target network was introduced by Minh (2015) and

will be adopted to train the traffic signal controller for the single intersection scenario in this

research.

The pseudocode of the DQN with experience replay and target network algorithm used in

this dissertation is listed below:

47

Figure 5.3-1. Algorithm: Deep Q-learning with Experience Replay and Target Network

5.4 Non-learning Traffic Signal Control Algorithms

To evaluate the effectiveness of the proposed DQN, we compared its performance against

that of two traditional traffic control algorithms (Uniform and Webster's) as well as the more

recent and advanced Max-pressure algorithm. This was done to generate similar Measures of

Effectiveness (MoEs) and to demonstrate the performance of our proposed model.

5.4.1 Uniform Traffic Controller

A uniform traffic controller (UTC) is a type of traffic control system where the signal

timing plan is fixed and does not change dynamically based on real-time traffic conditions. The

UTC uses a pre-determined signal plan to control traffic at an intersection, which is often

designed to provide uniform signal timings for each phase of the traffic signal cycle. This type of

traffic control system is widely used in areas with relatively stable traffic demand patterns and

limited traffic variations. However, UTC may not be able to adapt to sudden changes in traffic

flow or accommodate the needs of different types of road users. As a result, more advanced and

adaptive traffic control systems, such as actuated or intelligent traffic control systems, are being

developed and implemented to improve traffic efficiency and safety. It is also due to this reason,

all traffic signal controllers in this dissertation will apply the same phase patters described in the

DQN.

48

• Here is a general procedure for implementing a uniform traffic controller:

• Set the initial phase to be the first phase in the sequence.

• Allocate equal green time to each phase.

• Monitor traffic and detect when a phase has no demand. When this occurs, skip

that phase in the sequence.

• When all phases have been completed, return to the first phase and start the cycle

over again.

The only hyperparameter in UTC is green duration for each phase (we use the same green

duration for each phase), which will be tuned with the given traffic demand.

5.4.2 Webster’s Traffic Controller

Webster's traffic controller, also known as the Webster method, is a type of traffic signal

control algorithm developed by Anthony G. Webster in the 1950s. It is a fixed-time control

method, where the green times for each phase are predetermined based on traffic flow rates and

the geometric characteristics of the intersection.

The Webster method assumes that the traffic flow rates are known and constant, and the

signal timing plan is set in advance. The controller calculates the total cycle time and the

duration of each green interval based on the traffic demands of each approach, the saturation

flow rate, and the intersection geometry. The cycle time is the total duration of one complete

signal sequence, while the green interval is the period of time when a particular movement is

allowed to proceed through the intersection.

Webster's method is relatively simple and requires minimal input data. It is widely used

for low- to moderate-volume intersections and has been the basis for other traffic control

methods, such as the fixed-time coordinated method. However, it may not be suitable for high-

volume intersections or complex traffic conditions, where adaptive signal control methods may

be more effective.

We implement an adaptive Webster’s method by collecting traffic demand through a

fixed time interval to average the traffic demand and assume that the next interval with the same

length will have the similar traffic demand. Therefore, the recalculated green split will be

reasonable.

The procedure of Webster's traffic controller can be summarized as follows:

• Collect traffic data: Traffic volume data is collected from the intersection,

including the number of vehicles arriving on each lane, the queue length, and the

delay time.

• Determine cycle time: The total cycle time for the traffic signal is determined

based on the traffic demand and the minimum green time required for each phase.

• Calculate green times: The green time for each phase is calculated based on the

traffic demand and the pre-determined fixed time ratios for each phase.

49

• Implement the signal timings: The signal timings for each phase are programmed

into the traffic signal controller, which will operate the traffic signal according to

the pre-determined timings.

• Monitor traffic flow: The traffic flow at the intersection is monitored to ensure

that the traffic signal timings are effective and efficient. If necessary, the timings

can be adjusted based on the traffic data collected.

• Repeat the process: The above steps are repeated on a regular basis, usually daily,

to ensure that the traffic signal timings are optimal for the current traffic demand.

The hyperparameters in Webster’s method include minimum cycle length, maximum

cycle length, saturation flow rate, and time interval to recalculate the green time split. All of

these hyperparameters will be tuned to obtain the best performance of Webster’s method for the

performance comparison with other controllers.

5.4.3 Max-pressure Traffic Signal Controller

Max-pressure is a traffic control algorithm that aims to maximize the flow of traffic

through an intersection by prioritizing the lanes with the highest pressure, which is defined as the

difference between the number of vehicles entering the lane and the number of vehicles leaving

the lane. The Max-pressure algorithm is a decentralized control algorithm, which means that

each lane controller makes its own decisions based on local information, without requiring

communication or coordination with other controllers. The pressure of a particular phase is

defined as the sum of queue length of incoming lane, 𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔, minus the queue length of

its corresponding outgoing lane, 𝑞𝑢𝑒𝑢𝑒𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 for all the incoming lanes and outgoing lanes

associated, as listed below.

𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆𝒊 = ∑ 𝒒𝒖𝒆𝒖𝒆𝒊𝒏𝒄𝒐𝒎𝒊𝒏𝒈𝒍
− 𝒒𝒖𝒆𝒖𝒆𝒐𝒖𝒕𝒈𝒐𝒊𝒏𝒈𝒍

𝒍

As indicated by the previous equation, a phase's pressure can be negative, which implies

that the downstream lane has a greater vehicle queue than its incoming lane. Consequently, its

pressure value turns out to be negative, making it almost impossible to be selected. The phases

with higher pressure are selected more frequently in order to alleviate the pressure in the system.

In this study, the Max-pressure algorithm necessitates traffic data from the intersection's

surroundings, particularly the length of the outgoing vehicle queue.

The procedure of Max-pressure traffic controller can be explained below.

• At each time step, the controller obtains the current queue length of each outgoing

lane and calculates the pressure of each phase. The phase with the highest

pressure value is selected as the next phase to be executed. If there are multiple

phases with the same highest pressure value, one is selected randomly.

• After a phase is selected, the controller assigns a green time duration for the phase

based on a pre-defined green time ratio. The green time ratio is the proportion of

50

the total green time that a phase is assigned. The total green time is the sum of the

green times of all selected phases in a cycle.

• The Max-pressure controller repeats this process in each time step to ensure that

the pressure of the system is reduced as much as possible.

There is only one hyperparameter in Max-pressure traffic signal control and that is the

minimum green duration for a given phase, denoted as 𝑡𝑔𝑟𝑒𝑒𝑛. The hyperparameter will be

optimized in order to achieve the optimal performance.

5.5 Hyperparameter Tuning

In machine learning, there are two types of parameters: model parameters and

hyperparameters.

Model parameters are learned during the training process. They are the weights and

biases that the model learns from the data to make predictions. In supervised learning, model

parameters are updated using an optimization algorithm to minimize the difference between the

predicted outputs and the actual outputs for a given set of input data. For example, in a linear

regression model, the model parameters are the slope and intercept of the line that best fits the

data.

Hyperparameters are set by the user before training the model. They are not learned from

the data, but they affect how the model learns the model parameters. Hyperparameters control

aspects of the training process such as the learning rate, regularization strength, and the number

of hidden layers in a neural network. For example, in a neural network, the model parameters are

the weights and biases of the neurons, while the hyperparameters are the learning rate, the

number of hidden layers, the number of neurons in each layer and the activation functions used.

Both model parameters and hyperparameters are important in machine learning, and

selecting the right values for both can significantly affect the performance of the trained model.

5.5.1 Hyperparameters in DQN

In machine learning, hyperparameters are parameters that are not learned from the data,

but are set by the user before training the model. They are called "hyperparameters" because they

determine how the model's parameters (which are learned from the data) will be set during the

training process.

Some examples of hyperparameters include:

• Learning rate: determines how much the model weights are updated during

training.

• Number of hidden layers: determines how many layers are in the neural network.

• Batch size: determines how many examples are used in each iteration of training.

• Activation function: determines the function used to transform the input data in

each layer.

51

Hyperparameters are typically set using trial and error or more advanced optimization

methods such as grid search, random search, or Bayesian optimization. Selecting the right

hyperparameters is important because it can significantly affect the performance of the trained

model.

There is no universal rule of determining the best combination of hyperparameters due to

the complexity of real world environment and therefore to achieve a good machine learning

model, hyperparameter tuning is required, although many research efforts do not even mention it.

To our knowledge, this is the first time that a full suite of hyperparameter tuning has been

applied to the traffic signal control problem and a detailed explanation of the process for

applying the reinforcement learning model to traffic signal control has been provided. This

contribution will fill this gap so other researchers and engineers who are interested in

implementing machine learning algorithms to the traffic signal control problem can have a good

starting point.

Because of the large number of hyperparameters in DQN and the many potential values

for each, it is impractical to exhaustively search for the best combination. To simplify the

process, this research employs the commonly used method of grid search to tune the

hyperparameters. Grid search involves testing all possible combinations of hyperparameters from

a predetermined list, and training the model with each combination for a small fraction of the

total training time required to achieve convergence to an acceptable level. The performance of

each combination is then evaluated to identify the set of hyperparameters that produce the best

preliminary results, which is used to begin the actual training process.

It should be noted that the value of some hyperparameters may be adjusted during the

training process. For instance, the learning rate may be decreased as the agent gains a better

understanding of the environment and the model reaches a state where a lower learning rate may

allow for more exploration of local areas that were not reachable with the larger learning rate.

Table 5.5-1 lists all the tuned hyperparameters along with a brief definition for each.

Table 5.5-1. Hyperparameters tuned in DQN

Hyperparameters Definition

Reinforcement Learning Related Hyper-

parameters

Learning Rate To govern the pace the algorithm learns the

parameter through previous and current

rewards

Discount Factor Discount the future reward so not to have an

infinite calculation

Temporal Difference Steps Number of steps the reward will be used to

calculate the target q value

52

Neural Network Related Hyper-parameters

Number of Hidden Layers Number of layers between the input layer and

output layer

Target Frequency Number of time steps to update the target

neural network

5.5.2 Learning Rate

In reinforcement learning, the learning rate is a hyperparameter that determines the

degree to which the agent's Q-values are updated based on new experiences. It controls the step

size at which the agent updates its estimates of the optimal Q-values for each action. A small

learning rate means the agent will change its estimates slowly, while a large learning rate means

it will update them more quickly.

The learning rate is typically set to a small value (e.g., 0.1 or 0.01) to ensure the agent

learns gradually and avoids overfitting to specific experiences. However, the optimal learning

rate can depend on the specific environment and problem being tackled, so it is often a

hyperparameter that needs to be tuned through experimentation.

Based on the existing research on single intersection, we select three values for the

learning rate to be tuned, including , 10−3, 10−4, and 10−5.

5.5.3 Discount Factor

In reinforcement learning, the discount factor is a parameter that determines the

importance of future rewards in an agent's decision-making process.

The discount factor, denoted by γ (gamma), is a value between 0 and 1 that represents

how much an agent values future rewards. A value of 0 means that the agent only cares about

immediate rewards, while a value of 1 means that the agent values all rewards equally, regardless

of when they occur.

Three values are used to find the optimal one, 0.5, 0.9, and 0.99.

5.5.4 Temporal Difference Step

Temporal Difference (TD) is a learning method used in reinforcement learning, where the

agent learns to predict the value of the next state by updating its current estimate of the value

function based on the difference between the observed reward and the predicted reward. The TD

step involves calculating the TD error, which is the difference between the observed reward and

the predicted reward, and updating the value function estimate based on this error.

In the TD step, the agent observes the current state, takes an action, and receives a reward

and the next state. The agent uses the observed reward and the estimated value of the next state

53

to calculate the TD error. The TD error is then used to update the value function estimate for the

current state. This process is repeated for each time step, allowing the agent to learn to predict

the value of the next state based on its current estimate of the value function. The size of the TD

step is controlled by the learning rate and the discount factor.

We use two values in the tuning process for the TD Step 1 and 2.

5.5.5 Number of Hidden Layers

The number of hidden layers in a reinforcement learning (RL) algorithm depends on

various factors, such as the complexity of the problem and the size of the input and output

spaces.

In general, deep reinforcement learning algorithms, which use deep neural networks as

function approximators, often have multiple hidden layers. The number of hidden layers can

range from a few to dozens, depending on the complexity of the problem and the amount of

available training data.

However, it is important to note that the number of hidden layers is not the only factor

that affects the performance of an DQN algorithm. Other factors such as the number of neurons

in each layer, the activation functions used, and the optimization algorithm also play important

roles in the success of a DQN algorithm.

To reduce the number of combinations of hyperparameter tuning, we use a fixed number

(64) of nodes in each hidden layer and only tune the number of hidden layers to achieve the goal

of tuning the architecture of the DNNs. Based on the existing research about the single

intersection scenario as well as the input definition in our simulation, we choose two values for

the number of hidden layers, 3 and 6, resulting in 5 and 8 total layers for the DNNs combining

with the input and output layers.

5.5.6 Target Frequency

In reinforcement learning, the target frequency refers to how often the target network is

updated to match the parameters of the primary network. The target network is a separate copy

of the primary network used to estimate the value of the next state in the Q-learning algorithm.

The target network is updated less frequently than the primary network to provide a more

stable and consistent target for the Q-learning algorithm. The target frequency is a

hyperparameter that determines how often the target network is updated, and it can affect the

stability and convergence speed of the algorithm.

A common approach is to update the target network every 𝐶steps, where 𝐶 is the target

frequency hyperparameter. This approach is used in the DQN algorithm, where the target

network is updated every fixed number of steps.

We choose two values for the target frequency, 64 and 128.

54

5.5.7 Minimum Green Duration

We also tuned the minimum green duration. This value determines the minimum green

time for each phase. Two values are included in the tuning process, 6 and 12 seconds.

5.5.8 Non Tuned Hyperparameters

Some of the hyperparameters in the DQN are not tuned based on the fact that they are

easy to be determined based on the previous research and application. In addition, it is also an

effective method to reduce the total number of combinations of hyperparameters in the tuning

process and hence significantly reduce the computing time.

The replay buffer with size, denoted by 𝐵, saves a certain number of past experiences of

the agent to help calculate the loss of DQN and facilitate the model to converge. It seems a larger

size of replay buffer favors better model performance. However, this should be varied based on

the environment. A good way to determine it is it should be large enough to collect different

types of experience so the agent can handle almost every state-action pair. We use 40000 for the

replay buffer size in the single intersection scenario.

Batch size, denoted by 𝑏, determines the number of experiences randomly selected from

the replay buffer to be passed to the model. The minimum value of it can be 1 and the largest is

the size of the replay buffer. Normally, this value is equal to the power of 2 to take advantage of

the computer memory unit. We use 128 in our DQN.

The greedy factor refers to the degree to which the agent prioritizes exploitation of the

current best action versus exploration of new actions. A value of 1 for the greedy factor means

the agent always chooses the current best action, while a value of 0 means the agent always

chooses a random action. A common approach is to start with a high value for the greedy factor

to encourage exploration, and then gradually reduce it over time to focus more on exploitation.

This trade-off between exploration and exploitation is a fundamental challenge in reinforcement

learning. We apply this logic by using 1 over the simulation time to decrease the value of the

greedy factor.

Episode defines the time of the training process, meaning the larger value, the longer

experiment will be required. This hyperparameter is not explicitly tuned since we can easily

increase the learning time as needed. For the hyperparameter tuning, we use 5000 as the value

for the episode. Since each simulation lasts 3 hours, the total training time for each

hyperparameter combination is equal to repeating the 3-hour simulation 5000 times, which

should be a large enough simulation period to get a sense of the performance of each

combination of hyperparameters.

5.5.9 Summary

Table 5.5-2 summarizes the parameters used in the tuning and training process. If there is

only one single value, that parameter is not tuned, otherwise, it is a tuned parameter.

55

Table 5.5-2. Parameters in DQN including hyperparameter values

Parameters Value/Values

Learning Rate [0.0001, 0.00001, 0.001]

Discount Factor [0.5, 0.9, 0.99]

TD Step [1, 2]

Number of Hidden Layers [3, 6]

Target Frequency [64, 128]

Green Duration [6, 12]

Episodes 5000

Replay Buffer Size 40000

Batch Size 128

Number of Nodes Per Hidden Layer 64

Activation Function ReLU

Overall, we have total of 144 combinations of hyperparameters in the tuning process.

Hyperparameters for non-learning controllers are list in Table 5.5-3.

Table 5.5-3. Hyperparameters for non-learning controllers

Hyperparameters Values

Uniform Traffic Controller

Green Duration range(5, 26)

Webster’s Traffic Controller

Minimum Cycle Length [40, 60, 80]

Maximum Cycle Length [160, 180, 200]

Saturation Flow Rate [0.3, 0.38, 0.44]

Time Interval (recalculate critical flow [600, 900, 1800]

56

ratio)

Max-pressure Traffic Controller

Green Duration range(5, 26)

All controllers share the same yellow duration 3 seconds and all red duration 2 seconds.

5.6 Simulation Platform

5.6.1 Network

In accordance with Chapter 4, we utilized SUMO for the training and testing phases. The

experiment was performed on a single intersection. The intersection comprises four legs, each of

which is inclusive of three lanes: two straight movement lanes and one left-turn lane. The length

of each lane is 656 feet, equivalent to approximately 200 meters. To reflect the local street

environment, the design speed for all lanes is set at 40 mph. It is important to note that left-turn

lanes only permit left turns, but not U-turns.

5.6.2 Demand

As outlined in Chapter 4, the SUMO software generates demand through the associated

demand module, which is discussed in section 4.3.2. The origin-destination (OD) pattern is

entirely random, meaning that there is no predetermined ratio between straight movement and

left turn. The hourly distribution of the demand is modeled using an exponential function with a

sine wave to generate a random distribution of the demand and create unpredictable traffic

patterns for the simulations. Two types of total demand are used in the evaluation of the traffic

signal controller's performance, with approximately 4000 and 6000 vehicles per 3-hour

simulation. These demand levels are not so heavy that they cause the network to become entirely

congested, allowing for the evaluation of any control optimization to be conducted effectively.

5.6.3 Measures of Effectiveness

The evaluation of the traffic signal controllers' performance is based on several MoEs,

including the average travel time, standard deviation of travel time, queue length, and total

system delay. Once the training is complete and an acceptable DQN is achieved, we will conduct

50 simulations, each lasting for 3 hours and using random seeds to ensure unbiased results. The

average travel time is computed by dividing the total system travel time of all vehicles in the

system by the number of vehicles. At the intersection level, we use queue length and total system

delay as the MoEs. The queue length represents the total number of vehicles stopped in all

incoming lanes of an intersection at a specific time step, while the total system delay is

calculated by subtracting the free flow travel time from the sum of all vehicle travel times in the

system at a particular time step.

57

5.6.4 Code

We utilized an existing framework, developed by Genders and Razavi (2019), to compare

the performance of various traffic signal controllers, including Uniform, adaptive Webster's,

Max-pressure, and our proposed DQN with experience replay and target network. Although the

framework already included the code for these controllers, we had to develop our own code for

the DQN with a different reward function. However, the original code had not been maintained

for years and required significant effort to make it functional. To assist others in implementing

their own machine learning and non-machine learning controllers, the source code used in this

dissertation can be found in here.

5.7 Results

5.7.1 Hyperparameter Tuning Results

In Figure 1, the results of hyperparameter tuning are depicted for both learning and non-

learning traffic controllers. Figure 2 presents a consolidated view of all the hyperparameter

tuning results in a single figure.

Figure 5.7-1. Hyperparameter tuning results for each controller

https://github.com/sumodqnx/dqnx

58

Figure 5.7-2. Hyperparameter tuning results for all controllers in one graph

All sorted hyperparameter tuning results are listed from Appendix 3 to Appendix 6.

It should be noted that the purpose of hyperparameter tuning is to enable the machine

learning model to evaluate its initial performance using various combinations of model and

hyperparameters. However, in the case of non-learning traffic controllers, the hyperparameter

tuning process explores the performance of each hyperparameter configuration to identify the

optimal performance for each controller with a specific parameter setting. As a result, our

analysis of the hyperparameter tuning results primarily focuses on the DQN model.

 The results indicate that DQN performance is significantly affected by the choice

of hyperparameters. Therefore, it is highly recommended and necessary to perform

hyperparameter tuning before training any machine learning model, as the performance of a

learning model cannot be guaranteed by any specific combination of hyperparameters. This is

true not only for more complex frameworks that include multiple hyperparameters but also for

simpler ones like the reinforcement learning framework, Q-learning.

The presence of a grouping effect can be observed with respect to the learning rate and

the discounting factor, where a discounting factor of 0.99, which is close to 1, results in poor

performance, regardless of the configuration of other parameters. Additionally, the learning rate

is an important hyperparameter that has a significant impact on the model performance. This

finding confirms the conclusion of the study that the learning rate plays a crucial role in ensuring

that the model converges at an appropriate speed.

Interestingly, the other hyperparameters do not exhibit significant differences across

different settings. In the case of the number of hidden layers, it is unlikely that adding three

additional hidden layers would be necessary to extract more relevant information and enhance

59

the model's performance in our single intersection scenario. Similarly, the TD step, which

involves calculating one or two immediate rewards to update the DNN model, does not appear to

have a significant impact. The same is true for the update frequency, which follows a similar

trend.

In summary, our experiments have demonstrated that hyperparameter tuning is crucial for

achieving optimal performance when using DQN, as it is highly sensitive to the choice of

hyperparameters. Among the hyperparameters that we examined, the learning rate and discount

factor were found to be the most important in terms of their impact on the model's performance.

After analyzing the hyperparameter tuning results, we selected the combination of

hyperparameters that produced the best preliminary results in terms of the lowest average travel

time and standard deviation of travel time for further training the DQN model. The table below

provides an overview of all the parameters that were used in the DQN training process, as well as

the hyperparameters for the non-learning traffic controllers.

5.7.2 Traffic Controller Performance Comparison

Based on the results of hyperparameter tuning, we established the value of each

parameter for the extended training process of our DQN model. The hyperparameter tuning

process involved 5000 episodes of 3-hour simulations, which had already demonstrated the

agent's potential to outperform other non-learning traffic controllers in terms of average travel

time and standard deviation of travel time, as shown in Figure 5.7-2. Consequently, we decided

to initiate a new training process using the chosen hyperparameters, but with a larger number of

episodes. One reason for this decision was our method of formulating the epsilon, which is the

ratio of exploration and exploitation. Instead of continuing to train the best-performing model

from the hyperparameter tuning process, we chose to start anew.

As previously stated, we gradually decreased the value of epsilon during the training

process to enable the agent to explore more at the early stages and exploit more at the end of the

process. By starting a new training process with a larger number of episodes, we can provide the

agent with additional opportunities to explore and identify the most effective direction for

improving its performance during training by adding more episodes.

Our DQN model underwent training for 20,000 episodes, which equates to 20,000 3-hour

simulations based on the given demand of approximately 6,000 vehicles in the single

intersection. Figure 5.7-3 depicts the system-level performance of all controllers in terms of

average vehicle travel time, mean vehicle travel time, and standard deviation of vehicle travel

time.

60

Figure 5.7-3. System Level Performance Comparison of DQN and other Non-learning Controllers

with 6,000 Demand

Figure 5.7-4. Intersection Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand

Figure 5.7-4 depicts the intersection-level results, encompassing vehicle queue length and

vehicle delays. In a single simulation, we should have 10,800 results for each time step. To

smooth out the lines, we calculated the average values every minute, reducing the data to 180.

61

For each traffic controller, we conducted 32 simulations, resulting in 32 different outcomes. In

Figure 5.7-4, the solid line corresponds to the mean value obtained from these 32 results, while

the shaded area indicates the 95% confidence interval with alpha = 0.05. During this stage of the

analysis, the DQN model does not explore the environment further. Instead, it chooses the phase

that maximizes the reward at each time step.

For the intersection-level results, the x-axis represents the simulation time step, which is

180 minutes (3 hours), while the y-axis shows the queue length measured by the number of

vehicles in the intersection by summing all stopped vehicles from its incoming lanes in the top

graph and total delay of all vehicles in the lower graph.

Based on the results at both the system level and intersection level, our DQN model

outperforms all other considered controllers in terms of the chosen MoEs, with Max-pressure

coming in second and the uniform traffic controller performing the worst, which is not surprising

since we used fully random demand in the experiment. It is expected and well-known that

adaptive controllers are more efficient.

It should be noted that machine learning models are often unable to provide a clear

explanation for why they perform better than non-learning controllers. This is a limitation of

machine learning models, and more research is needed to make their decision-making process

more explicit. However, one observation that can be made is the pattern of phase selection by the

DQN. Figure 5.7-5 depicts the percentage of frequency each phase is selected in one simulation

for the DQN controller, while Figure 5.7-6 shows the same for the Max-pressure. It is evident

that the DQN seldom chooses the left-turn movement, accounting for only 5% of the total for the

left-turn phases. It is plausible that the DQN recognizes that the straight movement phases have

unprotected left-turn green light for those vehicles and that choosing the straight movement with

unprotected left-turn phases is more efficient.

Figure 5.7-5. Frequency of phase selection in one simulation for DQN controller with 6,000 Demand

62

Figure 5.7-6. Frequency of phase selection in one simulation for Max-pressure controller with 6,000

Demand

In addition to presenting the percentage of Max-pressure phases, we include the phase

with the highest pressure based on queue length, as it is also aperiodic. In our simulations, traffic

demand is random and sometimes results in more left-turning vehicles than those traveling

straight, leading to more frequent activation of left-turn phases compared to the DQN controller,

as indicated in Figure 5.7-5 and Figure 5.7-6. This demonstrates the benefit of the DQN

approach, which receives similar inputs but has learned a policy that utilizes unprotected left-turn

green allocations for left-turn traffic instead of resorting to protected left-turn phases that

introduce additional delays to the system.

There is another possible reason related to the definition of the state. As we included the

vehicle density and queue length for each lane, the agent may have learned to differentiate

between them and create predictions to extend certain phases in order to reduce system loss time.

It is also possible that the machine learning controller finds something that has not been found by

the most smart human beings.

We also tested the model with lower traffic demand (4,000) without hyperparameter

tuning and used the same hyperparameter settings from the previous experiment, which also

resulted in the best performance compared to non-learning traffic controllers, as shown in Figure

63

5.7-7 and

Figure 5.7-8. We did not initiate another round of training but utilized the results from the

traffic demand of 6,000 to this lower demand scenario.

Figure 5.7-7. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000

Demand

64

Figure 5.7-8. Intersection Level Performance Comparison of DQN and Non-learning Controllers with 4,000

Demand

It is reasonable that the previously trained DQN model could perform well with lower

traffic demand since it had already encountered similar conditions during the training process

and learned to generalize its performance. This result highlights the potential of machine learning

algorithms, as they cannot only learn from higher traffic demand scenarios but also generalize

their performance to lower traffic demand scenarios, outperforming non-learning traffic

controllers.

5.8 Conclusion

To ensure the optimal performance of our proposed DQN model, we conducted

experiments on various hyperparameter settings. This approach sets our research apart from

others, as most of them do not perform hyperparameter tuning before the actual training process.

The hyperparameter tuning process not only helped us optimize the non-learning traffic

controllers, but also laid a strong foundation for the actual DQN training process.

Based on the findings of the hyperparameter tuning, we discovered that the performance

of our proposed DQN is highly influenced by the configuration of its hyperparameters.

Specifically, the learning rate and discount factor were identified as the most critical

hyperparameters in our single intersection scenario, while other involved hyperparameters

appear to be less significant.

Our proposed DQN, equipped with experience replay, target network, and optimized

hyperparameters, has been shown through simulation experiments to provide the best

performance in terms of MoEs such as average travel time, queue length, and vehicle delays.

Moreover, the model is capable of generalizing well to lower traffic demand scenarios, thanks to

its training process with higher traffic demand.

65

Although coding and mathematical knowledge of the reinforcement learning framework

are required, transportation knowledge is only minimally necessary to understand DQN. In

addition to the traffic controller's principles, traditional complex traffic flow models do not have

to be explicitly formulated since the AI can learn them during the training process. This

advantage allows anyone interested in traffic signal controller algorithms to explore better

machine learning control algorithms without extensive knowledge of the transportation domain.

This accelerates the development of better control method performance.

66

Chapter 6. Grid Network Deep Reinforcement Learning Traffic Signal

Control with Incidents

6.1 Overview

Traffic incidents within transportation networks not only raise safety concerns for

travelers but also cause significant delays in the system. Traffic Incident Management (TIM) was

established to mitigate the adverse effects of such incidents by promptly resolving them and

restoring transport infrastructure services. While attempts have been made to use traffic signal

coordination to lessen the impact of incidents, the infrequency of these events and the

complexity of modeling the relationship between incidents and signal configurations have made

it difficult to implement. Consequently, devising a practical solution to adjust traffic controllers

and minimize the impact of incidents remains a challenge.

The aim of this study is to explore the application of machine learning techniques to

reduce the consequences of traffic incidents, building upon prior research that demonstrated the

superiority of DQN with hyperparameter tuning over conventional traffic control techniques

such as Uniform, Webster's, and Max-pressure. This approach circumvents the need for explicit

modeling of traffic flow and its relationship with signal plan configurations. Our research

includes an incident generation module, as described in Chapter 4, which creates random

incidents within the network to offer learning opportunities for the AI controller.

We will evaluate the performance of the DQN in the context of traffic incidents by

conducting experiments using two distinct network configurations: a two-intersection corridor

and a 2x2 grid network, both featuring incident occurrences. Moreover, we will analyze two

separate traffic demand scenarios with varying total vehicle counts to confirm the effectiveness

of the DQN. To improve the AI controller's capacity to handle traffic incidents, we introduce a

new state definition for the DQN.

6.2 Literature Review

Traffic incident management is a critical aspect of transportation system operations. It

involves the coordination of multiple agencies to promptly detect, respond to, and clear incidents

on road networks to minimize congestion, reduce secondary crashes, and improve overall

transportation efficiency. Traffic signal control strategies are essential tools that can be leveraged

to facilitate better traffic incident management. This literature review provides an overview of

the key research conducted on traffic incident management with a focus on traffic signal plan

adjustments.

Carson et al. (2010) conducted a comprehensive review of traffic incident management

practices in the United States. The author collected data from various sources, including federal

and state departments, transportation agencies, and emergency response organizations. The study

identifies best practices across different aspects of traffic incident management, such as incident

detection, response, clearance, and communication. The study concludes that adopting best

practices in traffic incident management can significantly improve the efficiency and

effectiveness of incident response, reduce congestion, and enhance safety for both responders

and road users. The report highlights the importance of inter-agency collaboration, real-time

67

communication, and standardized protocols in achieving better traffic incident management

outcomes. Additionally, it emphasizes the need for continuous training, performance

measurement, and improvement to ensure the successful implementation of best practices.

Goodall et al. (2013) conducted a qualitative analysis of traffic incident management

practices across multiple agencies. Interviews and surveys were used to collect data on

collaboration and communication among agencies involved in traffic incident management. The

study concludes that effective inter-agency collaboration and communication are crucial to

successful traffic incident management. It recommends the development of integrated systems

and standardized procedures to facilitate better collaboration among agencies.

These studies show performance improvement of transportation systems can be gained by

adjusting the traffic signal control plan during traffic incidents in the network. One of many

difficulties is how to provide a solid and reasonable strategy to adjust the traffic signal plan

accordingly. Gartner et al. (2001) reviewed existing Traffic-Responsive Plan Selection (TRPS)

systems and their methodologies. It also conducted a comparative analysis of their performance

in various traffic scenarios. The study finds that TRPS systems can significantly improve traffic

signal control during incidents by adapting signal timings to real-time traffic conditions. It

highlights the potential of TRPS in reducing congestion and travel times during incidents.

Traditional research uses model-based methods and microsimulation to investigate the

proposed signal control plan optimization strategies. Mirchandani and Head (2001) reviewed

model-based traffic signal control strategies, focusing on multiple-objective optimization

approaches. The authors explore various algorithms and their applicability in incident

management scenarios. The study concludes that model-based traffic signal control strategies can

effectively address multiple objectives, such as minimizing delays and maximizing throughput,

during incidents. It recommends further research on the development and evaluation of these

strategies in real-world traffic scenarios.

Aboudolas et al. (2010) explores the use of Model Predictive Control (MPC) as an

adaptive traffic signal control strategy. It develops a simulation model to evaluate the

performance of MPC in various traffic scenarios, including incidents. The study finds that MPC

can effectively adjust traffic signal timings during incidents, leading to reduced delays and

improved traffic flow. It recommends further research on the development and evaluation of

MPC in real-world traffic scenarios.

One significant limitation of using model-based methods to find the optimal traffic signal

control plan for reducing the impact of network traffic incidents is the dependenence on the

model accuracy . Due to the complexity of the transportation network system, this is too hard to

be practical.

Current research has begun to use machine learning methods to conquer the limitation of

traditional model-based methods of traffic signal adjustment. Hadiuzzaman et al. (2012)

proposed a methodology for adjusting traffic signal timings during incidents using Artificial

Neural Networks (ANNs). It develops an ANN-based model and evaluates its performance in

terms of reducing delays and congestion in simulated traffic scenarios. The study concludes that

the proposed ANN-based methodology can effectively adjust traffic signal timings during

68

incidents, leading to reduced delays and improved traffic flow. It recommends further research

on the development and evaluation of ANN-based traffic signal control strategies in real-world

traffic scenarios. However, the research did not explain the hyperparameters decision which

makes the research hard to duplicate and the compared signal controllers do not include more

advanced controllers such as Max-pressure.

This paper will fill the gap by investigating the impact of several key hyperparameters in

the deep reinforcement learnig, especially Deep Q-Network (DQN), to optimize traffic signal

control algorithms with traffic incident occurance. This will provide practical guidance for

researchers and enable implementations of deep reinforcement learning signal control algorithms

to reduce impacts of incidents in transportation networks.

6.3 Incident Generation

We have developed an incident generation module within the open-source

microsimulation platform, SUMO, to expose the machine learning controller to situations

involving traffic incidents within the network. This approach creates relevant experiences for the

AI controller to learn from and enhance its decision-making process regarding traffic phase

selection. To the best of our knowledge, this is the first instance of incorporating the incident

concept into SUMO.

In our simulation, we consider both single-vehicle and multiple-vehicle incidents. We

represent the number of vehicles involved by using a single vehicle in SUMO with varying

lengths, assuming each vehicle measures 5 meters in length with an additional 2.5-meter gap

between stopped vehicles. For example, a two-vehicle incident would occupy 15 meters of lane

space.

The incident generation module randomly selects a lane connecting two intersections to

emulate the coordination impact between traffic controllers. In our scenario, each identical

intersection features two straight movement lanes and one left-turn lane. We present two

potential incident locations: on the straight movement lane or the left-turn lane. To simplify the

learning process and minimize the risk of gridlock, we restrict incident locations to the straight

movement lanes.

The incident vehicle's route is generated randomly, adhering to the requirement that it

passes through at least two intersections. This ensures that the incident affects multiple

intersections rather than just one. Our simulation schedules the incident randomly during the

second hour of the three-hour simulation period, allowing most vehicles to complete their trips.

Incident durations are assumed to be either 15 or 30 minutes.

Additionally, we incorporate emergency service vehicles into the incident generation

module to simulate the rescue process impact. Representing an abstraction of multiple service

vehicles, the emergency vehicle varies in length from 22.5 to 45 meters. It is generated 5 minutes

after an incident is detected and travels from a random origin, stopping next to the incident

location until the incident vehicle moves.

Under these conditions, traffic flow is significantly affected by the incident, allowing us

to observe the intersection controllers' responses. The Uniform traffic controller maintains its

69

fixed pattern and green phase duration, offering no response to the incident. In contrast, the

Webster's traffic controller adjusts its phases to accommodate the new traffic pattern by either

reducing or extending the current phase. The Max-pressure and DQN traffic controllers, with

their acyclic phase selection capabilities, should theoretically perform better in such scenarios, as

they can choose suitable phases in any given situation.

6.4 New State

Transportation networks can be significantly disrupted by the occurrence of incidents.

One consequence is that vehicles behind the incident point may become stuck, regardless of the

amount of green time allocated. Adaptive traffic controllers struggle to account for this feature to

enhance their performance. To address this issue, we introduce a new state for the proposed

DQN to further improve its capabilities.

The new state is defined as the queue that could potentially be reduced by allocating

green time and monitoring vehicles that have not been able to move after experiencing green

phases. This approach ensures that the queue information passed to the DQN model is more

accurate. We apply this new state only to the DQN, as we have established in the previous

chapter that it outperforms other traffic controllers in single intersection scenarios. In this

chapter, our goal is to determine the extent of the DQN's performance improvement in situations

involving incidents and the application of the new state definition.

To implement the new state collection, information on each individual vehicle's location

and the most recent phase is required. If a vehicle's location has not changed compared to the

previous time step, and the vehicle has already experienced a green phase for its traveling

direction, we can deduce that the vehicle is stuck in the system and will be removed from the

queue calculation.

The DQN model employed in this chapter maintains the same structure as the one used in

the previous chapter, including its action and reward system, as well as the incorporation of

experience replay and target network. The DNN structure also remains similar, utilizing the

ReLU activation function and fully connected hidden layers. However, the primary distinction

lies in the increased number of hidden layers used in this chapter. This is due to the heightened

complexity of corridor and grid networks with traffic incidents, necessitating a more detailed

analysis of the relationship between action choices and environmental inputs.

6.5 Simulation Settings

To demonstrate the performance of the DQN, we compare it with three other traffic

signal controllers: Uniform, Webster's, and Max-pressure. Definitions and implementation

details for each traffic signal controller can be found in the previous chapter, which focuses on

single intersection scenarios. It is important to note that the new state definition is applied to both

the DQN and Max-pressure controllers, as they both depend on queue information to adjust their

phase choices. The simulation spans a three-hour period and is conducted using SUMO.

70

6.5.1 Network

We employ two network configurations to assess the performance of non-learning traffic

controllers and the DQN in scenarios involving incidents: a two-intersection corridor and a 2x2

grid network, illustrated in Figure 6.5-1 and Figure 6.5-2, respectively. Each intersection in these

network configurations is identical to the single intersection examined in the previous chapter.

Figure 6.5-1. Corridor with two intersections

71

Figure 6.5-2. 2x2 Grid Network

6.5.2 Demand

In the simulations, we will employ two distinct traffic demands, consisting of 4,000 and

6,000 vehicles, respectively. Although these demands are not overly heavy for the two networks

in the absence of incidents, the network becomes congested when an incident takes place,

presenting an opportunity for traffic controllers to adjust their phase selection and enhance

network performance.

The presence of an incident in the network can lead to longer queues at one or more

intersections compared to a situation without incidents. This can significantly diminish the

network's performance, which can be improved by employing adaptive traffic controllers such as

Webster's, Max-pressure, and a trained DQN.

72

6.6 Hyperparameter Tuning

Drawing on our experience with hyperparameter tuning in the single intersection

scenario, we have determined that the most crucial hyperparameters to adjust are the learning

rate and discount factor. To minimize computing time, we have limited the hyperparameter

tuning list to three values for each parameter. For the remaining parameters, we will use the

hyperparameters obtained from the single intersection tuning. Furthermore, we have increased

the number of hidden layers in the DNN from 3 to 6 to augment its capacity to capture more

complex features from the inputs, thereby improving the performance of the DQN controller.

Table 6.6-1 presents the parameters employed during the training process for the corridor and

grid networks, as well as other non-tuning parameters used in the DQN.

Table 6.6-1. Parameters used in DQN controller for the corridor and grid network

Parameters Value/Values

Learning Rate [0.0001, 0.00001, 0.001]

Discount Factor [0.5, 0.7, 0.9]

TD Step 2

Number of Hidden Layers 6

Target Frequency 128

Green Duration 6

Episodes 5000

Replay Buffer Size 40000

Batch Size 128

Number of Nodes Per Hidden Layer 64

Activation Function ReLU

6.7 Results

6.7.1 Hyperparameter Tuning Results

Hyperparameter tuning is carried out for both the corridor and grid (2x2 intersections)

networks with a higher traffic demand of 6,000 vehicles. Figure 6.7-1 and Figure 6.7-2

consolidate the results of hyperparameter tuning for each controller into a single figure to

facilitate a better understanding of each controller's performance after hyperparameter tuning,

where Figure 6.7-3 and Figure 6.7-4 show the combined results. Appendix 11 to 14 provide a

comprehensive list of hyperparameter tuning results for all four controllers.

73

It is important to note that the DQN's performance is not finalized, as we still need to

train the model instead of directly applying the preliminary results from hyperparameter tuning.

In contrast, the performance of the other three controllers is determined due to their non-learning

properties. The rationale behind using the incident scenario to train the DQN is to expose the

controller to experiences involving traffic interruptions caused by incidents, thereby enabling it

to better adapt its actions for improved performance. Once the DQN has learned from both

incident and non-incident periods, it may develop a model capable of handling both situations by

adjusting its DNN parameters.

Figure 6.7-1. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and

incident (Separate Graph)

74

Figure 6.7-2. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident

(Separate Graph)

Figure 6.7-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and

incident (Combined Graph)

75

Figure 6.7-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident

(Combined Graph)

It is noticeable that the performance of the DQN across different hyperparameter

combination settings is not as varied as seen in the single intersection hyperparameter tuning

results. This is because we have already narrowed down the potential values to be included in the

hyperparameter tuning process. Another observation is that, with proper hyperparameter settings,

the performance of the best DQN model can be on par with Max-pressure even without being

trained extensively.

To analyze the fact that traditional non-learning controllers struggle to handle varying

traffic situations, such as networks with or without incidents even for the same traffic demand,

we also conducted hyperparameter tuning for the 2x2 grid network with a 6,000-vehicle demand

and no incidents in the network. Figure 6.7-5 and Figure 6.7-6 display the hyperparameter tuning

results, while Appendix 15 to 18 provide more detailed information on the results.

76

Figure 6.7-5. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no

incident (Separate Graph)

Figure 6.7-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no

incident (Combined Graph)

77

By comparing the best hyperparameter settings from all controllers, we can see that the

learning model employs almost the same settings, with the only difference being the learning

rate. However, the second-best results use the same settings in both incident and non-incident

scenarios for the DQN. In contrast, non-learning controllers utilize entirely different settings to

compensate for the varying traffic patterns in the two scenarios.

6.7.2 Controller Performance Comparison

Using the best hyperparameter tuning settings for all controllers, we can compare their

performance at both the system and intersection levels. For the learning model, DQN, we need to

train it to achieve convergence. However, for non-learning controllers, we can simply use the

best hyperparameters to generate the results. Each controller will be simulated 32 times to obtain

a range of results, overcoming the randomness effect of using just a single simulation to verify

its performance. Figure 6.7-7 displays the system-level results, including the mean travel time of

all vehicles in the network with incidents in the corridor network, while Figure 6.7-8 illustrates

the intersection-level performance.

Figure 6.7-7. System Level Performance Comparison of DQN and other Non-learning

Controllers with 6,000 Demand and Incident in Corridor Network

78

Figure 6.7-8. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

6,000 Demand and Incident in Corridor Network

Figure 6.7-9 and Figure 6.7-10 depict the same performance measurement for the 2x2

grid network but with the presence of incidents.

Figure 6.7-9. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000

Demand and Incident in 2x2 Grid Network

79

Figure 6.7-10. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

6,000 Demand and Incident in 2x2 Grid Network

In contrast to the corridor scenario, the incident causes a significant amount of delay in

the grid network, which can be seen by the end period of the simulation, where the queue length

does not return to 0 due to unfinished vehicles. This is expected, as we did not allocate extra time

for the simulation but only allowed a 3-hour simulation for all situations.

Incidents in both networks cause the controller's performance to vary significantly, but

the mean travel time clearly shows that the fine-tuned and trained DQN outperforms other

controllers with the lowest mean travel time and the lowest standard deviation of mean travel

time.

We also applied the model to the same demand without incidents in the network to see if

the DQN controller can handle the situation for both incident and non-incident networks, even

with the same training model. The logic behind this is that during the training process, the DQN

controller also experiences the time when there is no incident in the network, as we only

introduce the incident to the network for a certain amount of time out of the 3-hour simulation

period.

Figure 6.7-11 to Figure 6.7-14 show the results when applying the incident model

directly to the non-incident scenario with the same traffic demand for both networks, including

corridor and grid networks.

80

Figure 6.7-11. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000

Demand and No Incident in Corridor Network

Figure 6.7-12. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

6,000 Demand and No Incident in Corridor Network

81

Figure 6.7-13. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000

Demand and No Incident in 2x2 Grid Network

Figure 6.7-14. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

6,000 Demand and No Incident in 2x2 Grid Network

82

It is evident that the DQN outperforms the other controllers by directly applying the

incident model to the non-incident situation.

In addition to testing the same model in scenarios with and without incidents, we also

apply the same model to cases with lower traffic demand. We reduce the demand by half,

resulting in about 4,000 vehicle demand in the following simulations. Figure 6.7-15 to Figure

6.7-22 display the performance of each traffic signal controller when applying its model from the

6,000-demand scenario with incidents to the 4,000-demand scenario, both with and without

incidents.

Figure 6.7-15. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000

Demand and Incident in Corridor Network

83

Figure 6.7-16. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

4,000 Demand and Incident in Corridor Network

Figure 6.7-17. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000

Demand and No Incident in Corridor Network

84

Figure 6.7-18. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

4,000 Demand and No Incident in Corridor Network

Figure 6.7-19. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000

Demand and Incident in 2x2 Grid Network

85

Figure 6.7-20. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

4,000 Demand and Incident in 2x2 Grid Network

Figure 6.7-21. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000

Demand and No Incident in 2x2 Grid Network

86

Figure 6.7-22. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

4,000 Demand and No Incident in 2x2 Grid Network

In general, the application of the DQN model to scenarios with lower traffic volumes,

both with and without incidents, demonstrates its notable performance advantage over non-

learning models. A peculiar observation from the above figures emerges in the 4,000-demand

incident grid network scenario, where direct application of the model encounters some issues

toward the end of the simulation. This is likely due to the DQN model's limited exposure to

scenarios where vehicles are cleared from the network following an incident, as experienced in

the original 6,000-demand grid network with an incident. It should be noted that we use a

temporal difference with a step of 2 to calculate the long-term rewards of the DQN model.

To address this limitation, we conduct further training of the original model in a scenario

with a traffic demand of 4,000 and an incident. Figure 6.7-23 and Figure 6.7-24 showcase the

results of this refined approach. The results shows that the DQN can be improved further by

exposing it to enough training time.

87

Figure 6.7-23. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000

Demand and No Incident in 2x2 Grid Network (with further training)

Figure 6.7-24. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with

4,000 Demand and No Incident in 2x2 Grid Network(with further training)

6.8 Conclusion

In conclusion, this chapter has presented a comprehensive comparative analysis between

the DQN traffic signal controller and the traditional non-learning traffic signal controller

88

techniques under the influence of traffic incidents in the network. Through rigorous evaluation, it

has been demonstrated that the DQN traffic signal controller significantly outperforms its non-

learning counterparts. The ability of the DQN controller to adapt and learn from its environment,

coupled with its capacity to handle unpredictable traffic situations, enables it to provide more

efficient and effective traffic signal timings.

We employ two distinct network configurations, a 2-intersection corridor and a 2x2 grid

network, to assess the performance of these controllers when confronted with traffic incidents.

After fine-tuning hyperparameters and further training the DQN controller, we generate results

for comparison. Additionally, we apply the model to a scenario without incidents to obtain

similar comparative results, highlighting the superior performance of the DQN model. We also

investigate lower demand scenarios both with and without traffic incidents in the network to

evaluate the robustness of the DQN controller's performance. The findings indicate that, once

properly trained, the DQN controller delivers consistent performance across various situations.

The implementation of the DQN traffic signal controller has shown great promise in

minimizing congestion, reducing travel time, and enhancing overall traffic flow in the presence

of traffic incidents. By incorporating state-of-the-art machine learning techniques, the DQN

traffic signal controller effectively manages traffic demands, mitigating the impact of incidents

on urban mobility. As a result, this innovative approach offers substantial benefits to cities and

urban planners by paving the way for a more sustainable and intelligent transportation system.

While further research and refinements are necessary to optimize the performance and scalability

of the DQN traffic signal controller, the findings presented in this chapter solidify its potential as

a critical component in the future of smart traffic management.

89

90

Chapter 7. Summary and Conclusions

7.1 Summary

In recent years, reinforcement learning (RL) has emerged as a promising approach to

optimizing traffic signal control. This technique involves enabling traffic signals to learn and

adapt to real-time traffic conditions autonomously, resulting in reduced congestion, improved

traffic flow, and enhanced road safety. Traditional traffic signal control methods, such as fixed-

time and actuated systems, have shown limitations in handling dynamic traffic conditions.

Reinforcement learning overcomes these limitations by allowing traffic signals to learn from

their environment and make decisions based on current traffic conditions. This adaptive behavior

results in more efficient traffic management and minimized delays for commuters. Various

reinforcement learning algorithms, including Q-learning, deep Q-networks (DQNs), and

proximal policy optimization (PPO), have been explored to address traffic signal control

problems. These methods have demonstrated the potential to reduce waiting times, vehicle

emissions, and fuel consumption by learning optimal traffic signal policies.

This dissertation examines the efficacy of the simplest reinforcement learning

framework, Q-learning, integrated with deep neural networks for optimizing traffic signal control

in various network configurations, both with and without traffic incidents. Chapter 2 presents an

extensive literature review to assess the current state of research and implementation of

reinforcement learning in traffic signal control optimization. Various reinforcement learning

approaches have been investigated to enhance intersection performance in transportation

networks by modifying traffic signal plans. These methods have yielded promising results.

However, there is limited research that presents a robust workflow, including hyperparameter

tuning – a crucial and fundamental step in developing machine learning algorithms. Furthermore,

the integration of reinforcement learning with traffic incident management for optimizing traffic

signals and minimizing the impact of network disruptions due to incidents has not been

adequately addressed, despite a significant practical demand for such solutions.

In Chapter 3, the main focus is on addressing these two gaps by elucidating the concept

of reinforcement learning, with an emphasis on Q-learning, which when combined with deep

neural networks, results in the formation of a deep Q-network (DQN). The chapter not only

highlights the benefits of DQN but also discusses its drawbacks and various modifications, such

as the incorporation of target networks and experience replay, which can be employed to

improve DQN performance.

Chapter 4 outlines the creation of an incident generation module within an open-source

microsimulation platform, SUMO. This module assists in generating experiences for the DQN

agent, enabling it to gather crucial information from simulations involving traffic incidents.

Consequently, the agent learns to modify the traffic signal controller to minimize the network's

incident impact. The developed module simplifies the effects of single or multiple vehicle

occurrences into a single vehicle with varying lengths to accurately represent its real-world

impact. Furthermore, the chapter introduces a depiction of the emergency vehicle rescue process

to enhance the realism of the simulations for the reinforcement learning agent. The random

generation of incidents eliminates the need for model developers to gather difficult-to-obtain

real-world data for use in simulations.

91

Chapter 5 carries out an in-depth hyperparameter tuning of the DQN within a single

intersection simulation scenario. This chapter identifies the most significant hyperparameters in

the DQN model, such as the learning rate and reward discount factor. An extensive

computational process is undertaken to determine the optimal combination of hyperparameters

for both learning (DQN) and non-learning traffic signal controllers (Max-pressure, Uniform, and

Websters) within the single intersection scenario. Upon completion of the DQN model training

based on the hyperparameter tuning, it is concluded that the DQN outperforms the other non-

learning traffic signal controllers.

In Chapter 6, the DQN agent is introduced to a more complex environment, incorporating

various network configurations (corridor and 2x2 grid network) and randomly generated

incidents within the network. Utilizing the hyperparameter tuning results from the single

intersection scenario, the range of potential values for the learning rate and discount factor is

narrowed when tuning the corridor and 2x2 grid network DQN models. Experimental results

reveal that the DQN outperforms non-learning controllers in both incident and non-incident

networks using a single model. This suggests that manual switching of traffic signal plans is

unnecessary during implementation, as the DQN can adapt to fluctuating demand patterns. This

finding is further corroborated by testing the performance of all controllers under lower traffic

demand settings. The results indicate that the DQN can be trained further to handle various

traffic demands, demonstrating its promising advantages over non-learning traffic signal

controllers.

7.2 Directions for Future Research

In future work, we plan to explore the application of more advanced reinforcement

learning (RL) frameworks to optimize traffic signal control performance. By leveraging cutting-

edge algorithms and techniques such as multi-agent RL, hierarchical RL, and deep RL, we aim to

create a more efficient and adaptive traffic signal control system that can better handle complex

urban environments. This will involve designing reward functions that capture various

objectives, such as reducing congestion, minimizing travel time, and improving fuel efficiency,

while considering the diverse needs of different road users, such as pedestrians, cyclists, and

public transportation. Additionally, incorporating real-time data from connected vehicles, traffic

sensors, and IoT devices will enable our RL-based traffic control system to be more responsive

to dynamic traffic patterns and emerging conditions. Ultimately, our goal is to develop a scalable

and robust traffic signal control system that can significantly improve traffic flow and contribute

to the development of smarter and more sustainable cities.

In addition, we aim to focus on the practical implementation of reinforcement learning-

based traffic signal control systems, bridging the gap between theoretical advancements and real-

world applications. This will involve addressing challenges such as system integration,

computational efficiency, and robustness to uncertainties, while ensuring that the system can be

seamlessly integrated into existing traffic management infrastructures. Additionally, we plan to

collaborate with local authorities, transportation agencies, and stakeholders to conduct pilot tests

in various urban settings, allowing us to gather critical insights and feedback on the performance,

scalability, and adaptability of our proposed system. To foster public acceptance and

engagement, we will also emphasize the importance of transparent and interpretable decision-

making processes within the RL framework. By considering the complex interplay between

92

technical feasibility, regulatory compliance, and public acceptance, we strive to deploy an

effective reinforcement learning-based traffic signal control system that can contribute to more

efficient, safe, and sustainable urban transportation networks.

Machine learning, as the driving force behind the future of technology, holds immense

potential for revolutionizing traffic signal control systems. As urban centers continue to expand,

the optimization of traffic flow has become increasingly critical to reduce congestion, fuel

consumption, and emissions. Studying and implementing machine learning techniques in traffic

signal control can lead to adaptive and intelligent systems that dynamically respond to real-time

traffic conditions, enhancing overall efficiency and safety. Therefore, it is imperative that

researchers, engineers, and policymakers closely examine and collaborate on the development

and integration of machine learning methods in traffic management to effectively address the

growing complexities of modern transportation networks.

93

94

Chapter 8. Glossary

AI Artificial Intelligence

CFP Cyclic Flow Profiles

DP Dynamic Programming

DTA Dynamic Traffic Assignment

DQN Deep Q Network

DNN Deep Neural Network

MDP Markov Decision Process

MC Monte Carlo

MOEs Measurement of Effectiveness

OPAC Optimized Policies for Adaptive Control

RHODES Real-Time Hierarchical Optimized Distributed and Effective System

RIMS Rutgers Incident Management System

SCATS Sydney Coordinated Adaptive Traffic System

SCOOT Split Cycle Offset Optimization Technique

SOTL Self-Organizing Traffic Light

TRRL Transport and Road Research Laboratory

TIM Traffic Incident Management

TD Temporal Difference

VISTA Visual Interactive System for Transport Algorithms

SUMO Simulation of Urban Mobility

95

Chapter 9. References

1. Aboudolas, K. M. A. E., Papageorgiou, M., Kouvelas, A., & Kosmatopoulos, E. (2010). A

rolling-horizon quadratic-programming approach to the signal control problem in large-scale

congested urban road networks. Transportation Research Part C: Emerging Technologies, 18(5),

680-694.

2. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2011, October). Traffic light control in non-

stationary environments based on multi agent Q-learning. In 2011 14th International IEEE

conference on intelligent transportation systems (ITSC) (pp. 1580-1585). IEEE.

3. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2014). Hierarchical control of traffic signals using

Q-learning with tile coding. Applied intelligence, 40(2), 201-213.

4. Abdulhai, B., Pringle, R., & Karakoulas, G. J. (2003). Reinforcement learning for true adaptive

traffic signal control. Journal of Transportation Engineering, 129(3), 278-285.

5. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018).

State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938.

6. Akcelik, R., Besley, M., & Chung, E. (1998). An evaluation of SCATS Master Isolated control.

In ARRB TRANSPORT RESEARCH LTD CONFERENCE, 19TH, 1998, SYDNEY, NEW

SOUTH WALES, AUSTRALIA.

7. Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-agent

system for network traffic signal control. IET Intelligent Transport Systems, 4(2), 128-135.

8. Balaji, P. G., German, X., & Srinivasan, D. (2010). Urban traffic signal control using

reinforcement learning agents. IET Intelligent Transport Systems, 4(3), 177-188.

9. Ban, X. J., Kamga, C., Wang, X., Wojtowicz, J., Klepadlo, E., Sun, Z., & Mouskos, K. (2014).

Adaptive Traffic Signal Control System (ACS-Lite) for Wolf Road, Albany, New York (No. C-

10-13). New York (State). Dept. of Transportation.

10. Ban, X., Wojtowicz, J. M., & Li, W. (2016). Decision-making tool for applying adaptive traffic

control systems (No. C-13-04). New York State Energy Research and Development Authority.

11. Bell, M. G. (1992). Future directions in traffic signal control. Transportation Research Part A:

Policy and Practice, 26(4), 303-313.

12. Carson, J. L. (2010). Best practices in traffic incident management (No. FHWA-HOP-10-050).

United States. Federal Highway Administration. Office of Transportation Operations.

13. Chin, Y. K., Bolong, N., Kiring, A., Yang, S. S., & Teo, K. T. K. (2011). Q-learning based traffic

optimization in management of signal timing plan. International Journal of Simulation, Systems,

Science & Technology, 12(3), 29-35.

14. Cools, S. B., Gershenson, C., & D’Hooghe, B. (2013). Self-organizing traffic lights: A realistic

simulation. In Advances in applied self-organizing systems (pp. 45-55). Springer, London.

15. Dell, P. A. O. L. O., & Mirchandani, B. (1995). REALBAND: An approach for real-time

coordination of traffic flows on networks. Transp. Res. Rec, 1494, 106-116.

16. Dougald, L. E., Venkatanarayana, R., & Goodall, N. J. (2016). Traffic incident management

quick clearance guidance and implications (No. FHWA/VTRC 16-R9, VTRC 16-R9). Virginia

Transportation Research Council.

17. Dutta, U., Lynch, J., Dara, B., & Bodke, S. (2010). Safety Evaluation of the SCATS Control

System (No. RC-1545K).

96

18. El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2014). Design of reinforcement learning

parameters for seamless application of adaptive traffic signal control. Journal of Intelligent

Transportation Systems, 18(3), 227-245.

19. Fellendorf, M. (1994, October). VISSIM: A microscopic simulation tool to evaluate actuated

signal control including bus priority. In 64th Institute of Transportation Engineers Annual

Meeting (Vol. 32, pp. 1-9). Springer.

20. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2001, August). Implementation of the OPAC

adaptive control strategy in a traffic signal network. In ITSC 2001. 2001 IEEE Intelligent

Transportation Systems. Proceedings (Cat. No. 01TH8585) (pp. 195-200). IEEE.

21. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2002). Optimized policies for adaptive control

strategy in real-time traffic adaptive control systems: Implementation and field testing.

Transportation Research Record, 1811(1), 148-156.

22. Gartner, N. H. (2005, October). Development of demand-responsive strategies for urban traffic

control. In System Modelling and Optimization: Proceedings of the 11th IFIP Conference

Copenhagen, Denmark, July 25–29, 1983 (pp. 166-174). Berlin, Heidelberg: Springer Berlin

Heidelberg.

23. Gayah, V. V., Gao, X. S., & Nagle, A. S. (2014). On the impacts of locally adaptive signal

control on urban network stability and the macroscopic fundamental diagram. Transportation

Research Part B: Methodological, 70, 255-268.

24. Ge, H., Song, Y., Wu, C., Ren, J., & Tan, G. (2019). Cooperative deep Q-learning with Q-value

transfer for multi-intersection signal control. IEEE Access, 7, 40797-40809.

25. Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning agent for traffic signal

control. arXiv preprint arXiv:1611.01142.

26. Gershenson, C. (2005). A general methodology for designing self-organizing systems. arXiv

preprint nlin/0505009.

27. Ghaman, R. S. (2007). ACS Lite: A Signal Timing Strategy for Closed Loop Systems. In ITE

2007 Annual Meeting and ExhibitInstitute of Transportation Engineers (ITE).

28. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

29. Goodfellow, I., McDaniel, P., & Papernot, N. (2018). Making machine learning robust against

adversarial inputs. Communications of the ACM, 61(7), 56-66.

30. Hadiuzzaman, M., Qiu, T. Z., & Lin, Y. (2012). Real-time Traffic State Estimation and Prediction

for Active Traffic and Demand Management: The Application of DynaTAM. In CICTP 2012:

Multimodal Transportation Systems—Convenient, Safe, Cost-Effective, Efficient (pp. 3335-

3351).

31. Head, K. L., Mirchandani, P. B., & Sheppard, D. (1992). Hierarchical framework for real-time

traffic control (No. 1360).

32. Howard, R. A. (1960). Dynamic programming and markov processes.

33. Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Winton, R. I. (1981). SCOOT-a traffic

responsive method of coordinating signals (No. LR 1014 Monograph).

34. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey.

Computers and electronics in agriculture, 147, 70-90

35. Kell, J. H., & Fullerton, I. J. (1991). Manual of traffic signal design.

36. Klein, L. A. (2001). Sensor technologies and data requirements for ITS.

97

37. Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and

applications of SUMO-Simulation of Urban MObility. International journal on advances in

systems and measurements, 5(3&4).

38. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444

39. Lin, F. B. (1985). Optimal timing settings and detector lengths of presence mode full-actuated

control (No. 1010).

40. Lin, L. J. (1992). Reinforcement learning for robots using neural networks. Carnegie Mellon

University.

41. Liu, H., & Hall, R. (2000). INCISM: Users Manual.

42. Logi, F., & Ritchie, S. G. (2001). Development and evaluation of a knowledge-based system for

traffic congestion management and control. Transportation Research Part C: Emerging

Technologies, 9(6), 433-459.

43. Lowrie, P. R. (1990). Scats, sydney co-ordinated adaptive traffic system: A traffic responsive

method of controlling urban traffic.

44. Mao, T., Mihaita, A. S., & Cai, C. (2019). Traffic signal control optimization under severe

incident conditions using Genetic Algorithm. arXiv preprint arXiv:1906.05356.

45. Markov, A. A. (1954). The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA

Steklova, 42, 3-375.

46. McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary

learning systems in the hippocampus and neocortex: insights from the successes and failures of

connectionist models of learning and memory. Psychological review, 102(3), 419.

47. Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: architecture,

algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6), 415-432.

48. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis,

D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-

533.

49. Shoufeng, L., Ximin, L., & Shiqiang, D. (2008, April). Q-learning for adaptive traffic signal

control based on delay minimization strategy. In 2008 IEEE International Conference on

Networking, Sensing and Control (pp. 687-691). IEEE.

50. Slinn, M., Matthews, P., & Guest, P. (1998). Traffic engineering design. Principles and practice.

51. Stevanovic, A., Kergaye, C., & Martin, P. T. (2009, November). Scoot and scats: A closer look

into their operations. In 88th Annual Meeting of the Transportation Research Board. Washington

DC.

52. Ozbay, K., & Bartin, B. (2003). Incident management simulation. Simulation, 79(2), 69-82.

53. Ozbay, K. M., Xiao, W., Jaiswal, G., Bartin, B., Kachroo, P., & Baykal-Gursoy, M. (2009).

Evaluation of incident management strategies and technologies using an integrated

traffic/incident management simulation. World Review of Intermodal Transportation Research,

2(2-3), 155-186.

54. Prashanth, L. A., & Bhatnagar, S. (2010). Reinforcement learning with function approximation

for traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 12(2), 412-

421.

98

55. Robertson, D. I. (1969). TRANSYT: a traffic network study tool.

56. Robertson, D. I. (1986). Research on the TRANSYT and SCOOT Methods of Signal

Coordination. ITE journal, 56(1), 36-40.

57. Roess, R. P., Prassas, E. S., & McShane, W. R. (2004). Traffic engineering. Pearson/Prentice

Hall.

58. Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.

59. Shelby, S. G., Bullock, D. M., Gettman, D., Ghaman, R. S., Sabra, Z. A., & Soyke, N. (2008,

January). An overview and performance evaluation of ACS Lite–a low cost adaptive signal

control system. In Transportation Research Board Annual Meeting (Vol. 190, pp. 130-137).

60. Skabardonis, A., Bertini, R. L., & Gallagher, B. R. (1998). Development and application of

control strategies for signalized intersections in coordinated systems. Transportation research

record, 1634(1), 110-117.

61. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

62. Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). SVM parameter optimization using grid search

and genetic algorithm to improve classification performance. TELKOMNIKA

(Telecommunication Computing Electronics and Control), 14(4), 1502-1509.

63. Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double

q-learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).

64. Varaiya, P. (2013). Max pressure control of a network of signalized intersections. Transportation

Research Part C: Emerging Technologies, 36, 177-195.

65. Wang, S. C. (2003). Artificial neural network. In Interdisciplinary computing in java

programming (pp. 81-100). Springer, Boston, MA.

66. Watkins, C. J. C. H. (1989). Learning from delayed rewards.

67. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3), 279-292.

68. Webster, F. V. (1958). Traffic signal settings, road research technical paper no. 39. Road

Research Laboratory.

69. Winston, P. H. (1992). Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc..

70. Wirtz, J. J., Schofer, J. L., & Schulz, D. F. (2005). Using simulation to test traffic incident

management strategies: The benefits of preplanning. Transportation research record, 1923(1), 82-

90.

71. Yin, Y., Li, M., & Skabardonis, A. (2007). Offline offset refiner for coordinated actuated signal

control systems. Journal of transportation engineering, 133(7), 423-432.

99

100

Appendix 1: SUMO Network Generation Script

The command below was run to generate the 4x4 grid network illustrated in this paper.

netgenerate --grid --grid.number=4 --grid.length=200 --default.lanenumber=2 --

default.speed=20 --no-turnarounds=true --turn-lanes=1 --turn-lanes.length=100 --default-

junction-type=traffic_light --grid.attach-length=200 --tls.yellow.time=3 --tls.left-green.time=12 -

-tls.allred.time = 2 --output-file=net.net.xml

Network generating parameters and their meanings:

--grid: grid network will be generated. SUMO also provides for other types of networks

to be generated automatically, including spider and random networks.

--grid.length defines the length of each intersection leg in meters

--default.lanenumber defines the number of lanes for each approach

--default.speed defines the edge design speed in meters/second

--no-turnarounds defines whether to allow turn around for the left turn lane

--turn-lanes defines the number of left turn lanes

--turn-lanes.length defines the length of left turn lanes

--default-junction-type defines the intersections in the network are controlled by the

pretimed traffic signals

--grid.attach-length defines the length of road attached to the fringe of intersections in the

network

--tls.yellow.time defines the duration of yellow phase in seconds

--tls.left-green.time defines the protected left turn movement green time in seconds

--tls.allred.time defines the duration of all red phase in seconds

More options of calling NETGENERATE could be found in

https://sumo.dlr.de/docs/netgenerate.html.

101

Appendix 2: Developed Traffic Demand Generating Script

Traffic demand was prepared by calling python randomTrips.py -n net.net.xml -r

random.rou.xml --fringe-factor=100000000 --period=0.5 -e 3600.

Where randomTrips.py is a Python script tool provided by SUMO.

-n net.net.xml defines the location of the network file.

-r defines the name of the output route file.

--fringe-factor defines the ratios of through and internal traffic demand in the network.

An extremely large number is used here to eliminate the internal traffic demand in the network.

--period defines the 1/number of vehicles generated per second. 0.5 used here means two

vehicles will be generated per second in the network.

-e defines the end simulation step of generating trips so here one hour traffic demand is

generated.

102

Appendix 3: DQN Hyperparameter Tuning Results for Single

Intersection Network

ID
Discount
Factor

Green
Duration
(seconds)

Learnig
Rate

Number of
Hidden
Layers

Temporal
Difference
Steps

Update
Frequency

Mean
(seconds)

Standard
Deviation
(seconds)

1 0.5 6
1.00E-

05 3 2 64 54 29

2 0.5 6
1.00E-

05 3 1 64 55 31

3 0.5 6 0.001 6 1 128 56 37

4 0.5 6 0.001 6 2 64 56 34

5 0.5 6 0.0001 3 2 128 57 40

6 0.5 6 0.0001 6 2 128 57 36

7 0.5 6
1.00E-

05 3 2 128 57 32

8 0.5 6
1.00E-

05 6 1 128 57 37

9 0.5 6
1.00E-

05 6 2 64 57 33

10 0.5 6 0.001 3 2 128 57 36

11 0.9 6
1.00E-

05 6 2 64 57 35

12 0.5 6 0.0001 3 2 64 58 40

13 0.5 6
1.00E-

05 6 2 128 58 39

14 0.5 6 0.001 6 1 64 58 39

15 0.5 6 0.001 6 2 128 58 40

16 0.9 6
1.00E-

05 3 2 128 58 35

17 0.5 6 0.0001 3 1 64 59 40

18 0.5 6 0.0001 3 1 128 59 43

19 0.5 6
1.00E-

05 3 1 128 59 32

20 0.5 6 0.001 3 1 128 59 37

21 0.5 6
1.00E-

05 6 1 64 60 42

22 0.5 12 0.0001 3 1 64 60 33

23 0.5 12 0.0001 3 1 128 60 39

24 0.5 6 0.0001 6 1 64 61 46

103

25 0.5 6 0.0001 6 2 64 61 46

26 0.5 6 0.001 3 1 64 61 46

27 0.5 6 0.001 3 2 64 61 48

28 0.9 6 0.001 3 1 128 61 43

29 0.5 6 0.0001 6 1 128 63 52

30 0.9 6 0.001 3 1 64 64 38

31 0.9 6
1.00E-

05 6 2 128 65 51

32 0.9 12 0.0001 3 1 64 66 35

33 0.9 12 0.0001 3 2 64 66 43

34 0.9 12 0.001 3 2 128 67 61

35 0.99 12 0.0001 3 2 128 69 41

36 0.9 6 0.001 6 2 64 71 57

37 0.5 12 0.0001 3 2 128 72 69

38 0.5 12 0.0001 6 1 64 72 71

39 0.5 12 0.001 3 2 64 72 69

40 0.99 12 0.0001 3 2 64 72 45

41 0.5 12 0.0001 6 1 128 73 70

42 0.5 12 0.001 3 1 64 73 72

43 0.9 12 0.0001 3 1 128 73 56

44 0.9 6 0.001 3 2 128 73 67

45 0.9 6 0.001 6 2 128 73 73

46 0.5 12 0.0001 3 2 64 74 71

47 0.5 12 0.001 3 1 128 74 75

48 0.9 6
1.00E-

05 6 1 128 75 56

49 0.5 12 0.0001 6 2 128 76 79

50 0.5 12
1.00E-

05 6 2 64 76 78

51 0.5 12 0.001 6 1 128 76 78

52 0.9 6
1.00E-

05 6 1 64 76 48

53 0.9 12 0.0001 6 2 128 76 79

54 0.9 12 0.001 6 2 128 76 80

55 0.5 12
1.00E-

05 3 1 128 77 79

104

56 0.5 12 0.001 6 1 64 77 81

57 0.9 12
1.00E-

05 6 2 128 77 81

58 0.5 12 0.0001 6 2 64 78 82

59 0.5 12
1.00E-

05 6 1 128 78 82

60 0.5 12
1.00E-

05 6 2 128 78 81

61 0.9 12 0.001 3 2 64 78 80

62 0.9 6 0.0001 6 2 64 78 81

63 0.9 6 0.001 3 2 64 78 81

64 0.9 12 0.0001 6 2 64 78 81

65 0.9 12 0.0001 6 1 64 78 82

66 0.9 12 0.001 6 1 128 78 82

67 0.5 12
1.00E-

05 3 1 64 79 83

68 0.5 12 0.001 3 2 128 79 82

69 0.9 6 0.0001 3 2 64 79 74

70 0.5 12 0.001 6 2 64 80 84

71 0.5 12 0.001 6 2 128 80 86

72 0.9 12 0.0001 3 2 128 80 82

73 0.9 12
1.00E-

05 6 2 64 80 84

74 0.5 12
1.00E-

05 6 1 64 81 87

75 0.9 6
1.00E-

05 3 2 64 81 74

76 0.9 12 0.001 3 1 64 81 79

77 0.9 12 0.001 3 1 128 81 81

78 0.9 12
1.00E-

05 3 2 128 81 85

79 0.5 12
1.00E-

05 3 2 64 82 88

80 0.9 12 0.001 6 1 64 82 86

81 0.9 12 0.0001 6 1 128 82 88

82 0.5 12
1.00E-

05 3 2 128 84 87

83 0.9 6 0.0001 3 2 128 85 87

84 0.9 12
1.00E-

05 3 2 64 85 92

105

85 0.9 12 0.001 6 2 64 87 90

86 0.99 12 0.001 6 2 128 90 138

87 0.9 6 0.0001 3 1 64 92 81

88 0.9 12
1.00E-

05 6 1 64 93 106

89 0.9 6 0.001 6 1 128 94 96

90 0.99 12 0.001 3 2 128 98 204

91 0.9 6 0.0001 3 1 128 99 117

92 0.99 12
1.00E-

05 6 2 128 101 100

93 0.99 12
1.00E-

05 6 2 64 103 112

94 0.9 6 0.0001 6 2 128 104 133

95 0.9 12
1.00E-

05 6 1 128 105 128

96 0.9 6 0.001 6 1 64 107 141

97 0.99 6 0.0001 3 2 128 115 166

98 0.9 6 0.0001 6 1 64 129 219

99 0.9 6 0.0001 6 1 128 131 181

100 0.99 12 0.0001 6 2 128 131 366

101 0.9 12
1.00E-

05 3 1 128 137 115

102 0.99 12 0.0001 6 1 128 144 270

103 0.99 12 0.0001 3 1 128 150 282

104 0.99 12 0.001 6 1 128 152 444

105 0.9 12
1.00E-

05 3 1 64 156 141

106 0.99 6
1.00E-

05 6 2 128 156 471

107 0.99 6 0.0001 6 1 128 160 180

108 0.99 6 0.0001 6 1 64 173 177

109 0.99 12 0.0001 6 2 64 190 566

110 0.9 6
1.00E-

05 3 1 128 195 139

111 0.99 6 0.0001 3 2 64 207 351

112 0.99 12 0.001 3 1 128 213 696

113 0.99 6 0.0001 6 2 64 221 623

114 0.99 12 0.0001 3 1 64 224 434

106

115 0.9 6
1.00E-

05 3 1 64 234 165

116 0.99 6
1.00E-

05 3 2 128 268 185

117 0.99 6 0.0001 3 1 128 274 353

118 0.99 12
1.00E-

05 3 1 64 284 227

119 0.99 12
1.00E-

05 3 1 128 284 232

120 0.99 6 0.0001 6 2 128 294 800

121 0.99 6
1.00E-

05 3 1 128 305 206

122 0.99 12
1.00E-

05 3 2 128 307 260

123 0.99 6 0.0001 3 1 64 308 568

124 0.99 6 0.001 3 2 64 341 862

125 0.99 12
1.00E-

05 6 1 128 341 1165

126 0.99 6 0.001 3 1 128 344 1054

127 0.99 12 0.001 6 1 64 347 1110

128 0.99 6 0.001 6 1 128 354 1174

129 0.99 6
1.00E-

05 3 2 64 361 289

130 0.99 12 0.001 3 2 64 364 1156

131 0.99 12
1.00E-

05 6 1 64 369 1188

132 0.99 6 0.001 6 2 128 370 1191

133 0.99 12 0.001 3 1 64 391 1017

134 0.99 6 0.001 6 2 64 400 1076

135 0.99 6 0.001 3 1 64 403 1243

136 0.99 6 0.001 3 2 128 424 1029

137 0.99 6
1.00E-

05 3 1 64 496 931

138 0.99 12 0.0001 6 1 64 504 1216

139 0.99 12
1.00E-

05 3 2 64 655 1117

140 0.99 6
1.00E-

05 6 1 128 728 1536

141 0.99 6
1.00E-

05 6 2 64 1104 1554

142 0.99 6 0.001 6 1 64 1129 2038

107

143 0.99 12 0.001 6 2 64 1184 1985

144 0.99 6
1.00E-

05 6 1 64 1263 2072

108

Appendix 4: Max-pressure Hyperparameter Tuning Results for

Single Intersection Network

ID Green Duration Mean (seconds) Standard Deviation (seconds)

1 7 56 22

2 9 58 22

3 8 58 24

4 12 59 25

5 11 60 25

6 10 60 26

7 6 59 29

8 5 61 34

9 13 61 35

10 14 61 36

11 16 63 39

12 15 66 49

13 18 70 58

14 17 71 58

15 20 75 69

16 19 76 71

17 21 79 77

18 22 81 81

19 24 82 82

20 23 84 85

21 25 84 87

109

Appendix 5: Uniform Hyperparameter Tuning Results for Single

Intersection Network

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds)

1 21 81 39

2 22 81 39

3 23 82 39

4 25 84 40

5 24 84 42

6 16 82 50

7 19 84 48

8 17 84 52

9 18 85 53

10 20 86 52

11 14 84 55

12 15 89 62

13 12 95 75

14 13 96 74

15 11 106 87

16 10 123 106

17 9 125 105

18 8 164 141

19 7 170 144

20 6 202 168

21 5 250 203

110

Appendix 6: Webster’s Hyperparameter Tuning Results for Single

Intersection Network

ID
Max Cycle Length

(seconds)
Min Cycle Length

(seconds)
Time Interval

(seconds)
Satuation
Flow Rate

Mean
(seconds)

Standard
Deviation
(seconds)

1 200 60 600 0.38 74 42

2 180 40 600 0.38 75 44

3 160 60 600 0.38 75 45

4 160 40 600 0.38 75 48

5 200 40 600 0.44 74 49

6 200 40 1800 0.44 75 48

7 180 60 600 0.38 76 49

8 160 60 600 0.44 75 51

9 180 40 1800 0.44 76 51

10 200 40 600 0.38 76 51

11 160 40 600 0.44 76 52

12 180 40 600 0.44 75 53

13 160 40 600 0.3 80 49

14 180 40 600 0.3 80 49

15 160 40 1800 0.44 77 53

16 160 80 600 0.38 78 52

17 180 60 600 0.44 76 54

18 160 40 900 0.44 76 55

19 160 60 900 0.3 80 51

20 160 80 600 0.3 81 50

21 200 60 900 0.38 77 54

22 160 40 900 0.38 78 54

23 160 60 600 0.3 81 52

24 180 40 900 0.44 77 56

25 180 60 900 0.38 78 55

26 200 60 600 0.3 83 50

111

27 160 40 900 0.3 80 54

28 180 40 900 0.38 79 55

29 180 60 600 0.3 83 51

30 200 40 600 0.3 83 52

31 200 40 900 0.3 82 53

32 200 40 900 0.38 79 56

33 200 60 600 0.44 78 58

34 200 80 600 0.3 84 52

35 160 40 1800 0.38 79 58

36 180 40 900 0.3 82 55

37 180 40 1800 0.38 79 58

38 180 60 900 0.44 78 59

39 180 80 600 0.3 84 53

40 200 40 1800 0.38 80 58

41 160 60 900 0.38 81 58

42 180 80 600 0.38 82 57

43 200 60 900 0.3 84 55

44 180 80 900 0.3 84 56

45 200 40 900 0.44 78 62

46 160 40 1800 0.3 83 59

47 160 80 600 0.44 81 62

48 200 80 600 0.38 83 60

49 180 80 600 0.44 81 63

50 180 60 900 0.3 85 60

51 200 80 600 0.44 81 64

52 160 80 900 0.3 85 61

53 180 40 1800 0.3 84 62

54 160 60 1800 0.3 85 62

55 200 60 900 0.44 81 66

56 200 60 1800 0.3 86 63

57 200 80 900 0.3 87 62

58 180 60 1800 0.3 86 64

59 200 60 1800 0.38 84 68

112

60 160 60 900 0.44 83 70

61 200 80 900 0.38 85 69

62 160 80 900 0.38 85 70

63 200 40 1800 0.3 88 67

64 180 60 1800 0.44 85 72

65 160 60 1800 0.44 85 73

66 180 80 900 0.38 87 72

67 160 60 1800 0.38 87 74

68 180 60 1800 0.38 88 75

69 200 60 1800 0.44 87 76

70 200 80 1800 0.3 90 74

71 160 80 900 0.44 89 80

72 180 80 1800 0.3 92 77

73 200 80 900 0.44 90 81

74 180 80 900 0.44 91 82

75 160 80 1800 0.3 94 81

76 200 80 1800 0.38 92 86

77 160 80 1800 0.38 94 88

78 180 80 1800 0.38 95 88

79 180 80 1800 0.44 94 90

80 160 80 1800 0.44 95 92

81 200 80 1800 0.44 97 94

113

Appendix 7: Hyperparameter Tuning Results: DQN in Corridor

Network with 6,000 Traffic Demand and Incident

ID

-b
a
tc

h

D
is

c
o
u
n
t
F

a
c
to

r

G
re

e
n
 D

u
ra

ti
o

n

L
e
a
rn

in
g

 R
a
te

-l
re

N
u
m

b
e
r

o
f
H

id
d
e
n
 L

a
y
e
rs

-n
re

p
la

y

T
e
m

p
o
ra

l
D

if
fe

re
n
c
e
 S

te
p
s

U
p
d
a
te

 F
re

q
u
e
n
c
y

-u
p
d
a
te

s

M
e
a
n

(s
e
c
o
n
d
s
)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o

n

(s
e
c
o
n
d
s
)

1 128 0.1 6 1.00E-04 1.00E-07 6 800000 2 128 5000 68 55

2 128 0.1 6 1.00E-05 1.00E-07 6 800000 2 128 5000 67 86

3 128 0.5 6 1.00E-04 1.00E-07 6 800000 2 128 5000 66 90

4 128 0.9 6 1.00E-04 1.00E-07 6 800000 2 128 5000 73 90

5 128 0.9 6 1.00E-05 1.00E-07 6 800000 2 128 5000 77 96

6 128 0.7 6 1.00E-03 1.00E-07 6 800000 2 128 5000 70 107

7 128 0.1 6 1.00E-03 1.00E-07 6 800000 2 128 5000 71 111

8 128 0.7 6 1.00E-04 1.00E-07 6 800000 2 128 5000 72 116

9 128 0.5 6 1.00E-05 1.00E-07 6 800000 2 128 5000 72 117

10 128 0.9 6 0.001 1.00E-07 6 800000 2 128 5000 80 118

11 128 0.5 6 1.00E-03 1.00E-07 6 800000 2 128 5000 76 129

12 128 0.7 6 1.00E-05 1.00E-07 6 800000 2 128 5000 79 139

114

Appendix 8: Hyperparameter Tuning Results: Max-pressure in

Corridor Network with 6,000 Traffic Demand and Incident

ID Green Duration Mean (seconds) Standard Deviation (seconds)

1 5 66 50

2 23 72 73

3 18 71 87

4 17 73 93

5 9 76 93

6 22 74 97

7 21 75 97

8 11 76 102

9 19 78 108

10 14 78 112

11 20 80 110

12 16 77 116

13 7 78 117

14 15 79 116

15 12 80 116

16 13 81 118

17 25 82 118

18 10 82 122

19 8 81 126

20 6 82 135

21 24 85 135

115

Appendix 9: Hyperparameter Tuning Results: Uniform in Corridor

Network with 6,000 Traffic Demand and Incident

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds)

1 14 91 92

2 24 99 84

3 17 98 106

4 5 109 96

5 16 96 110

6 13 98 124

7 18 103 120

8 9 99 125

9 11 98 127

10 23 106 119

11 10 99 127

12 15 104 134

13 20 107 134

14 22 112 146

15 25 115 143

16 12 105 154

17 19 112 152

18 7 113 157

19 8 112 158

20 21 116 159

21 6 125 161

116

Appendix 10: Hyperparameter Tuning Results: Webster’s in

Corridor Network with 6,000 Traffic Demand and Incident

ID
Max Cycle Length

(seconds)
Min Cycle Length

(seconds)
Time Interval

(seconds)
Satuation
Flow Rate

Mean
(seconds)

Standard
Deviation
(seconds)

1 180 40 1800 0.44 77 71

2 160 40 600 0.3 87 66

3 160 40 600 0.38 78 83

4 180 40 600 0.38 81 88

5 180 80 1800 0.3 83 87

6 160 60 600 0.38 83 91

7 180 80 900 0.3 85 94

8 200 40 900 0.3 81 100

9 180 60 900 0.3 82 100

10 200 60 900 0.38 82 101

11 160 60 1800 0.3 85 101

12 180 40 900 0.38 83 103

13 160 80 1800 0.38 86 102

14 160 60 1800 0.38 84 105

15 180 80 900 0.38 87 103

16 200 40 900 0.38 83 107

17 200 80 1800 0.3 86 104

18 200 80 1800 0.44 87 103

19 200 80 1800 0.38 86 105

20 160 60 900 0.3 86 107

21 200 60 600 0.3 86 107

22 200 40 600 0.3 88 106

23 200 60 1800 0.3 88 110

24 180 40 1800 0.3 86 113

25 200 60 900 0.44 86 115

26 200 80 900 0.44 87 114

27 160 60 600 0.3 88 114

28 180 60 1800 0.44 86 116

117

29 200 60 600 0.44 86 116

30 160 40 1800 0.38 86 117

31 160 80 1800 0.44 89 114

32 180 80 900 0.44 88 115

33 160 80 900 0.3 91 114

34 180 60 600 0.38 89 116

35 180 60 1800 0.3 87 119

36 180 40 900 0.44 88 120

37 160 40 900 0.38 88 121

38 180 80 600 0.44 90 120

39 200 60 1800 0.38 87 123

40 180 60 600 0.44 90 121

41 200 80 600 0.44 89 122

42 160 40 1800 0.3 89 123

43 160 40 900 0.44 89 124

44 200 40 1800 0.3 89 124

45 160 40 1800 0.44 88 126

46 180 80 1800 0.38 93 121

47 160 60 900 0.38 89 126

48 160 80 1800 0.3 90 125

49 200 60 600 0.38 90 125

50 180 40 600 0.3 90 126

51 180 60 600 0.3 90 126

52 200 40 1800 0.38 89 127

53 200 60 900 0.3 90 126

54 160 40 900 0.3 92 126

55 200 80 600 0.38 91 127

56 200 80 900 0.38 91 127

57 160 60 900 0.44 91 129

58 180 40 900 0.3 91 129

59 200 40 600 0.38 89 131

60 180 60 1800 0.38 89 132

61 160 60 1800 0.44 89 133

118

62 180 80 600 0.3 92 130

63 160 60 600 0.44 91 132

64 200 40 1800 0.44 90 133

65 180 60 900 0.38 91 133

66 200 80 600 0.3 95 130

67 160 80 900 0.38 93 133

68 160 80 600 0.3 95 134

69 200 40 600 0.44 91 138

70 160 80 600 0.38 94 137

71 180 80 1800 0.44 94 140

72 200 60 1800 0.44 94 142

73 160 80 900 0.44 96 142

74 160 40 600 0.44 94 145

75 160 80 600 0.44 97 142

76 200 40 900 0.44 96 143

77 200 80 900 0.3 100 145

78 180 40 600 0.44 97 149

79 180 80 600 0.38 100 149

80 180 40 1800 0.38 97 155

81 180 60 900 0.44 100 158

119

Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid

with 6,000 Traffic Demand and Incident

ID

-b
a
tc

h

D
is

c
o
u
n
t
F

a
c
to

r

G
re

e
n
 D

u
ra

ti
o

n

L
e
a
rn

ig
 R

a
te

-l
re

N
u
m

b
e
r

o
f

H
id

d
e
n
 L

a
y
e
rs

-n
re

p
la

y

T
e
m

p
o
ra

l
D

if
fe

re
n
c
e
 S

te
p
s

U
p
d
a
te

 F
re

q
u
e
n
c
y

-u
p
d
a
te

s

M
e
a
n

(s
e
c
o
n
d
s
)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o

n

(s
e
c
o
n
d
s
)

1 128 0.5 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 99 169

2 128 0.5 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 107 203

3 128 0.9 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 118 231

4 128 0.5 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 114 238

5 128 0.9 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 138 216

6 128 0.7 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 116 251

7 128 0.7 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 131 290

8 128 0.9 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 148 283

9 128 0.7 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 148 307

120

Appendix 12: Hyperparameter Tuning Results: Max-pressure in 2x2

Grid Network with 6,000 Traffic Demand and Incident

ID Green Duration Mean (seconds) Standard Deviation (seconds)

1 24 97 101

2 23 105 132

3 6 104 135

4 9 106 135

5 16 109 144

6 5 108 155

7 17 111 152

8 19 109 169

9 15 110 169

10 12 113 172

11 8 118 193

12 7 120 209

13 11 125 220

14 18 126 234

15 25 129 231

16 21 133 235

17 14 130 240

18 13 130 244

19 20 140 283

20 10 155 327

21 22 155 336

121

Appendix 13: Hyperparameter Tuning Results: Uniform in 2x2 Grid

Network with 6,000 Traffic Demand and Incident

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds)

1 8 110 110

2 23 129 116

3 10 118 143

4 16 129 137

5 20 130 138

6 13 127 146

7 15 129 144

8 12 125 152

9 24 137 140

10 18 133 145

11 25 138 140

12 19 133 146

13 21 138 157

14 14 139 180

15 22 146 178

16 9 137 199

17 17 152 245

18 7 141 271

19 11 150 263

20 5 158 272

21 6 163 270

122

Appendix 14: Hyperparameter Tuning Results: Webster’s in 2x2

Grid Network with 6,000 Traffic Demand and Incident

ID
Max Cycle

Length (seconds)
Min Cycle

Length (seconds)
Time Interval

(seconds)
Saturation
Flow Rate

Mean
(seconds)

Standard
Deviation
(seconds)

1 180 60 600 0.38 105 110

2 200 80 600 0.38 109 111

3 160 60 900 0.38 106 120

4 160 40 1800 0.3 106 125

5 160 80 600 0.38 111 125

6 180 80 600 0.44 111 126

7 160 80 900 0.44 111 127

8 180 80 1800 0.3 110 129

9 160 40 900 0.38 109 135

10 200 80 900 0.44 114 131

11 160 40 600 0.3 111 137

12 180 40 900 0.44 110 139

13 160 60 900 0.3 111 139

14 200 80 1800 0.44 113 137

15 180 40 600 0.38 112 143

16 160 40 600 0.44 113 143

17 160 40 1800 0.44 113 143

18 180 80 900 0.44 118 142

19 200 40 600 0.44 113 149

20 200 80 600 0.44 114 151

21 200 40 900 0.3 112 155

22 160 60 1800 0.44 111 158

23 160 40 600 0.38 116 154

24 180 40 600 0.3 119 160

25 180 60 900 0.38 116 167

26 200 60 600 0.38 116 169

27 160 40 1800 0.38 120 166

28 200 80 1800 0.38 118 168

123

29 180 60 1800 0.44 113 175

30 160 60 1800 0.3 122 168

31 180 80 900 0.3 123 168

32 160 40 900 0.3 119 180

33 180 60 1800 0.3 123 177

34 180 60 1800 0.38 119 181

35 200 60 900 0.38 119 181

36 180 60 600 0.44 119 184

37 160 60 900 0.44 118 187

38 160 40 900 0.44 119 187

39 180 80 600 0.3 128 179

40 200 80 600 0.3 125 182

41 180 40 900 0.38 120 188

42 180 40 1800 0.3 120 191

43 200 60 1800 0.44 124 192

44 160 80 900 0.38 126 192

45 200 60 1800 0.3 124 196

46 160 60 600 0.3 125 196

47 200 60 1800 0.38 125 197

48 180 80 600 0.38 124 201

49 200 40 600 0.3 122 204

50 200 60 600 0.3 126 203

51 180 40 600 0.44 128 204

52 160 60 600 0.44 123 210

53 180 80 1800 0.44 127 207

54 180 40 900 0.3 131 207

55 200 80 1800 0.3 127 211

56 180 60 900 0.44 127 212

57 180 60 900 0.3 133 213

58 200 60 600 0.44 130 216

59 160 60 1800 0.38 128 220

60 160 80 600 0.3 129 221

61 200 60 900 0.3 130 221

124

62 200 60 900 0.44 135 219

63 200 80 900 0.3 130 225

64 180 40 1800 0.38 129 231

65 180 80 900 0.38 135 226

66 180 60 600 0.3 133 234

67 160 80 1800 0.44 136 234

68 160 80 900 0.3 136 238

69 200 40 600 0.38 136 242

70 160 80 600 0.44 142 239

71 180 40 1800 0.44 139 248

72 200 40 900 0.44 138 253

73 200 40 1800 0.44 140 252

74 200 40 900 0.38 139 257

75 200 40 1800 0.38 141 256

76 160 80 1800 0.38 150 255

77 200 80 900 0.38 144 281

78 200 40 1800 0.3 149 277

79 180 80 1800 0.38 151 279

80 160 80 1800 0.3 153 290

81 160 60 600 0.38 151 300

125

Appendix 15: Hyperparameter Tuning Results For DQN in 2x2 Grid

Network with 6,000 Traffic Demand and No Incident
ID

-b
a
tc

h

D
is

c
o
u
n
t
F

a
c
to

r

G
re

e
n
 D

u
ra

ti
o

n

L
e
a
rn

in
g

 R
a
te

-l
re

N
u
m

b
e
r

o
f
H

id
d
e
n

L
a
y
e
rs

-n
re

p
la

y

T
e
m

p
o
ra

l

D
if
fe

re
n
c
e
 S

te
p
s

U
p
d
a
te

 F
re

q
u
e
n
c
y

-u
p
d
a
te

s

M
e
a
n

 (
s
e
c
o
n
d
s
)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o

n

(s
e
c
o
n
d
s
)

1 128 0.5 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 68 30

2 128 0.5 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 69 30

3 128 0.7 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 69 30

4 128 0.5 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 70 31

5 128 0.7 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 70 31

6 128 0.7 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 71 32

7 128 0.9 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 71 32

8 128 0.9 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 81 42

9 128 0.9 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 89 53

126

Appendix 16: Hyperparameter Tuning Results For Max-pressure in

2x2 Grid Network with 6,000 Traffic Demand and No Incident

ID Green Duration Mean (seconds) Standard Deviation (seconds)

1 5 80 36

2 6 81 37

3 7 81 37

4 8 83 38

5 9 85 39

6 17 84 40

7 20 84 40

8 16 85 41

9 18 85 41

10 19 85 41

11 21 85 41

12 23 85 41

13 10 86 41

14 11 86 41

15 22 85 42

16 24 85 42

17 25 85 42

18 12 86 42

19 14 86 42

20 15 86 42

21 13 87 42

127

Appendix 17: Hyperparameter Tuning Results For Uniform in 2x2

Grid Network with 6,000 Traffic Demand and No Incident

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds)

1 7 90 40

2 9 91 41

3 10 93 41

4 8 93 42

5 11 96 44

6 12 97 45

7 6 96 48

8 13 100 47

9 14 103 49

10 5 103 52

11 15 105 51

12 16 107 53

13 17 108 54

14 18 109 55

15 19 109 55

16 20 110 57

17 21 112 58

18 22 113 59

19 23 114 60

20 24 115 62

21 25 117 63

128

Appendix 18: Hyperparameter Tuning Results For Websters in 2x2

Grid Network with 6,000 Traffic Demand and No Incident

ID
Max Cycle Length

(seconds)
Min Cycle Length

(seconds)
Time Interval

(seconds)
Satuation
Flow Rate

Mean
(seconds)

Standard
Deviation
(seconds)

1 180 40 1800 0.38 87 39

2 180 40 1800 0.44 87 39

3 160 40 600 0.38 87 40

4 160 40 600 0.44 87 40

5 160 40 900 0.38 87 40

6 180 40 600 0.44 87 40

7 180 40 900 0.38 87 40

8 180 40 900 0.44 87 40

9 180 40 1800 0.3 87 40

10 200 40 600 0.38 87 40

11 200 40 900 0.44 87 40

12 200 40 1800 0.38 87 40

13 200 40 1800 0.44 87 40

14 160 40 1800 0.3 88 40

15 160 40 1800 0.38 88 40

16 160 40 1800 0.44 88 40

17 200 40 1800 0.3 88 40

18 160 40 900 0.3 88 41

19 160 40 900 0.44 88 41

20 160 60 1800 0.44 88 41

21 180 40 600 0.3 88 41

22 180 40 600 0.38 88 41

23 180 40 900 0.3 88 41

24 200 40 600 0.3 88 41

25 200 40 600 0.44 88 41

26 200 40 900 0.3 88 41

27 200 40 900 0.38 88 41

28 200 60 900 0.38 89 41

129

29 200 60 1800 0.3 88 42

30 200 60 1800 0.44 88 42

31 160 40 600 0.3 89 42

32 160 60 600 0.38 89 42

33 160 60 600 0.44 89 42

34 160 60 900 0.44 89 42

35 160 60 1800 0.3 89 42

36 180 60 600 0.38 89 42

37 180 60 600 0.44 89 42

38 180 60 900 0.3 89 42

39 180 60 900 0.44 89 42

40 180 60 1800 0.3 89 42

41 180 60 1800 0.38 89 42

42 180 60 1800 0.44 89 42

43 200 60 600 0.38 89 42

44 200 60 900 0.3 89 42

45 200 60 1800 0.38 89 42

46 160 60 900 0.3 89 43

47 160 60 900 0.38 89 43

48 160 60 1800 0.38 89 43

49 180 60 900 0.38 89 43

50 200 60 600 0.3 89 43

51 200 60 900 0.44 89 43

52 160 60 600 0.3 90 43

53 180 60 600 0.3 90 43

54 200 60 600 0.44 90 43

55 160 80 600 0.3 93 46

56 160 80 900 0.3 93 46

57 160 80 1800 0.3 93 46

58 160 80 1800 0.38 93 46

59 160 80 1800 0.44 93 46

60 180 80 600 0.3 93 46

61 180 80 1800 0.3 93 46

130

62 180 80 1800 0.38 93 46

63 180 80 1800 0.44 93 46

64 200 80 900 0.38 93 46

65 200 80 900 0.44 93 46

66 200 80 1800 0.3 93 46

67 200 80 1800 0.38 93 46

68 200 80 1800 0.44 93 46

69 180 80 900 0.38 93 47

70 160 80 600 0.38 94 47

71 160 80 600 0.44 94 47

72 160 80 900 0.38 94 47

73 160 80 900 0.44 94 47

74 180 80 600 0.38 94 47

75 180 80 600 0.44 94 47

76 180 80 900 0.3 94 47

77 180 80 900 0.44 94 47

78 200 80 600 0.3 94 47

79 200 80 600 0.38 94 47

80 200 80 600 0.44 94 47

81 200 80 900 0.3 94 47

	Structure Bookmarks
	
	
	
	
	
	
	Figure

	Center for Advanced Multimodal Mobility
	Center for Advanced Multimodal Mobility
	Solutions and Education

	
	Figure
	
	Project ID: 2022 Project 07
	
	
	DEVELOPING ROBUST SMART TRAFFIC SIGNAL CONTROL
	
	Final Report
	
	by
	
	Tianxin Li, Ph.D. (ORCID ID:
	Tianxin Li, Ph.D. (ORCID ID:
	https://orcid.org/0000-0002-3061-8077
	https://orcid.org/0000-0002-3061-8077

)

	Graduate Research Assistant
	The University of Texas at Austin
	301 E. Dean Keeton Street, Stop C1761, Austin, TX 78712
	Phone: 1-512-471-4541; Email:
	Phone: 1-512-471-4541; Email:
	tianxinli@utexas.edu
	tianxinli@utexas.edu

	

	
	Randy Machemehl, Ph.D., P.E. (ORCID ID:
	Randy Machemehl, Ph.D., P.E. (ORCID ID:
	https://orcid.org/0000-0002-6314-2626
	https://orcid.org/0000-0002-6314-2626

)

	Professor
	The University of Texas at Austin
	301 E. Dean Keeton Street, Stop C1761, Austin, TX 78712
	Phone: 1-512-471-4541; Email:
	Phone: 1-512-471-4541; Email:
	rbm@mail.utexas.edu
	rbm@mail.utexas.edu

	

	
	for
	
	Center for Advanced Multimodal Mobility Solutions and Education
	(CAMMSE @ UNC Charlotte)
	The University of North Carolina at Charlotte
	9201 University City Blvd
	Charlotte, NC 28223
	
	September 2023
	
	
	ACKNOWLEDGEMENTS
	
	This project was funded by the Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE @ UNC Charlotte), one of the Tier I University Transportation Centers that were selected in this nationwide competition, by the Office of the Assistant Secretary for Research and Technology (OST-R), U.S. Department of Transportation (US DOT), under the FAST Act. The authors are also very grateful for all of the time and effort spent by DOT and industry professionals to provide project information that was
	
	
	
	DISCLAIMER
	
	The contents of this report reflect the views of the authors, who are solely responsible for the facts and the accuracy of the material and information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation University Transportation Centers Program in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The contents do not necessarily reflect the official views of the U.S. Government. This repo
	
	
	
	
	
	
	
	Table of Contents
	Table of Contents
	EXECUTIVE SUMMARY ... xvi
	EXECUTIVE SUMMARY ... xvi
	EXECUTIVE SUMMARY ... xvi

	

	Chapter 1. Introduction ..1
	Chapter 1. Introduction ..1
	Chapter 1. Introduction ..1

	

	1.1 Problem Statement .. 2
	1.1 Problem Statement .. 2
	1.1 Problem Statement .. 2

	

	1.2 Objectives ... 3
	1.2 Objectives ... 3
	1.2 Objectives ... 3

	

	1.3 Expected Contributions ... 3
	1.3 Expected Contributions ... 3
	1.3 Expected Contributions ... 3

	

	1.4 Report Overview ... 3
	1.4 Report Overview ... 3
	1.4 Report Overview ... 3

	

	Chapter 2. Literature Review ...5
	Chapter 2. Literature Review ...5
	Chapter 2. Literature Review ...5

	

	2.1 Introduction ... 5
	2.1 Introduction ... 5
	2.1 Introduction ... 5

	

	2.2 Traditional Traffic Signal Control Methods ... 5
	2.2 Traditional Traffic Signal Control Methods ... 5
	2.2 Traditional Traffic Signal Control Methods ... 5

	

	2.2.1 Pretimed Signal Control .. 5
	2.2.1 Pretimed Signal Control .. 5
	2.2.1 Pretimed Signal Control .. 5

	

	2.2.2 Actuated Signal Control .. 6
	2.2.2 Actuated Signal Control .. 6
	2.2.2 Actuated Signal Control .. 6

	

	2.2.3 Adaptive Signal Control .. 8
	2.2.3 Adaptive Signal Control .. 8
	2.2.3 Adaptive Signal Control .. 8

	

	2.3 Reinforcement Learning Traffic Signal Control ... 10
	2.3 Reinforcement Learning Traffic Signal Control ... 10
	2.3 Reinforcement Learning Traffic Signal Control ... 10

	

	2.3.1 Isolated Intersections ... 10
	2.3.1 Isolated Intersections ... 10
	2.3.1 Isolated Intersections ... 10

	

	2.3.2 Coordinated Intersections .. 11
	2.3.2 Coordinated Intersections .. 11
	2.3.2 Coordinated Intersections .. 11

	

	2.3.3 Deep Q-learning .. 12
	2.3.3 Deep Q-learning .. 12
	2.3.3 Deep Q-learning .. 12

	

	2.3.4 Traffic Incident Management in Traffic Signal Control ... 13
	2.3.4 Traffic Incident Management in Traffic Signal Control ... 13
	2.3.4 Traffic Incident Management in Traffic Signal Control ... 13

	

	2.4 Summary ... 14
	2.4 Summary ... 14
	2.4 Summary ... 14

	

	Chapter 3. Deep Reinforcement Learning Algorithm ..17
	Chapter 3. Deep Reinforcement Learning Algorithm ..17
	Chapter 3. Deep Reinforcement Learning Algorithm ..17

	

	3.1 Introduction ... 17
	3.1 Introduction ... 17
	3.1 Introduction ... 17

	

	3.2 Reinforcement Learning ... 17
	3.2 Reinforcement Learning ... 17
	3.2 Reinforcement Learning ... 17

	

	3.3 Q-Learning .. 19
	3.3 Q-Learning .. 19
	3.3 Q-Learning .. 19

	

	3.3.1 Tabular Q-learning .. 21
	3.3.1 Tabular Q-learning .. 21
	3.3.1 Tabular Q-learning .. 21

	

	3.3.2 Deep Neural Network and Deep Q-learning ... 22
	3.3.2 Deep Neural Network and Deep Q-learning ... 22
	3.3.2 Deep Neural Network and Deep Q-learning ... 22

	

	3.4 Deep Q-learning Variations .. 24
	3.4 Deep Q-learning Variations .. 24
	3.4 Deep Q-learning Variations .. 24

	

	3.4.1 Experience Replay ... 24
	3.4.1 Experience Replay ... 24
	3.4.1 Experience Replay ... 24

	

	3.4.2 Target network .. 24
	3.4.2 Target network .. 24
	3.4.2 Target network .. 24

	

	3.5 Summary ... 25
	3.5 Summary ... 25
	3.5 Summary ... 25

	

	Chapter 4. Simulation Preparation ..28
	Chapter 4. Simulation Preparation ..28
	Chapter 4. Simulation Preparation ..28

	

	4.1 Overview ... 28
	4.1 Overview ... 28
	4.1 Overview ... 28

	

	4.2 Literature Review ... 28
	4.2 Literature Review ... 28
	4.2 Literature Review ... 28

	

	4.3 Simulation Platform .. 30
	4.3 Simulation Platform .. 30
	4.3 Simulation Platform .. 30

	

	4.3.1 Network ... 31
	4.3.1 Network ... 31
	4.3.1 Network ... 31

	

	4.3.2 Traffic Demand ... 31
	4.3.2 Traffic Demand ... 31
	4.3.2 Traffic Demand ... 31

	

	4.3.3 Incident Generation ... 32
	4.3.3 Incident Generation ... 32
	4.3.3 Incident Generation ... 32

	

	4.3.4 Emergency Service Vehicles Simulation in Sumo .. 32
	4.3.4 Emergency Service Vehicles Simulation in Sumo .. 32
	4.3.4 Emergency Service Vehicles Simulation in Sumo .. 32

	

	4.4 Simulation Procedure .. 34
	4.4 Simulation Procedure .. 34
	4.4 Simulation Procedure .. 34

	

	4.5 Implementation ... 35
	4.5 Implementation ... 35
	4.5 Implementation ... 35

	

	4.6 Summary ... 36
	4.6 Summary ... 36
	4.6 Summary ... 36

	

	Chapter 5. Single Intersection Deep Reinforcement Learning Traffic Signal Control39
	Chapter 5. Single Intersection Deep Reinforcement Learning Traffic Signal Control39
	Chapter 5. Single Intersection Deep Reinforcement Learning Traffic Signal Control39

	

	5.1 Overview ... 39
	5.1 Overview ... 39
	5.1 Overview ... 39

	

	5.2 Deep Q-Learning Model ... 39
	5.2 Deep Q-Learning Model ... 39
	5.2 Deep Q-Learning Model ... 39

	

	5.2.1 Agent ... 40
	5.2.1 Agent ... 40
	5.2.1 Agent ... 40

	

	5.2.2 Environment .. 40
	5.2.2 Environment .. 40
	5.2.2 Environment .. 40

	

	5.2.3 State ... 40
	5.2.3 State ... 40
	5.2.3 State ... 40

	

	5.2.4 Action .. 41
	5.2.4 Action .. 41
	5.2.4 Action .. 41

	

	5.2.5 Reward .. 41
	5.2.5 Reward .. 41
	5.2.5 Reward .. 41

	

	5.2.6 Policy ... 42
	5.2.6 Policy ... 42
	5.2.6 Policy ... 42

	

	5.2.7 DNN Structure ... 43
	5.2.7 DNN Structure ... 43
	5.2.7 DNN Structure ... 43

	

	5.3 Variations of DQN .. 45
	5.3 Variations of DQN .. 45
	5.3 Variations of DQN .. 45

	

	5.3.1 Experience Replay ... 45
	5.3.1 Experience Replay ... 45
	5.3.1 Experience Replay ... 45

	

	5.3.2 Double DQN ... 45
	5.3.2 Double DQN ... 45
	5.3.2 Double DQN ... 45

	

	5.4 Non-learning Traffic Signal Control Algorithms ... 47
	5.4 Non-learning Traffic Signal Control Algorithms ... 47
	5.4 Non-learning Traffic Signal Control Algorithms ... 47

	

	5.4.1 Uniform Traffic Controller .. 47
	5.4.1 Uniform Traffic Controller .. 47
	5.4.1 Uniform Traffic Controller .. 47

	

	5.4.2 Webster’s Traffic Controller ... 48
	5.4.2 Webster’s Traffic Controller ... 48
	5.4.2 Webster’s Traffic Controller ... 48

	

	5.4.3 Max-pressure Traffic Signal Controller .. 49
	5.4.3 Max-pressure Traffic Signal Controller .. 49
	5.4.3 Max-pressure Traffic Signal Controller .. 49

	

	5.5 Hyperparameter Tuning .. 50
	5.5 Hyperparameter Tuning .. 50
	5.5 Hyperparameter Tuning .. 50

	

	5.5.1 Hyperparameters in DQN .. 50
	5.5.1 Hyperparameters in DQN .. 50
	5.5.1 Hyperparameters in DQN .. 50

	

	5.5.2 Learning Rate .. 52
	5.5.2 Learning Rate .. 52
	5.5.2 Learning Rate .. 52

	

	5.5.3 Discount Factor ... 52
	5.5.3 Discount Factor ... 52
	5.5.3 Discount Factor ... 52

	

	5.5.4 Temporal Difference Step ... 52
	5.5.4 Temporal Difference Step ... 52
	5.5.4 Temporal Difference Step ... 52

	

	5.5.5 Number of Hidden Layers ... 53
	5.5.5 Number of Hidden Layers ... 53
	5.5.5 Number of Hidden Layers ... 53

	

	5.5.6 Target Frequency ... 53
	5.5.6 Target Frequency ... 53
	5.5.6 Target Frequency ... 53

	

	5.5.7 Minimum Green Duration ... 54
	5.5.7 Minimum Green Duration ... 54
	5.5.7 Minimum Green Duration ... 54

	

	5.5.8 Non Tuned Hyperparameters .. 54
	5.5.8 Non Tuned Hyperparameters .. 54
	5.5.8 Non Tuned Hyperparameters .. 54

	

	5.5.9 Summary ... 54
	5.5.9 Summary ... 54
	5.5.9 Summary ... 54

	

	5.6 Simulation Platform .. 56
	5.6 Simulation Platform .. 56
	5.6 Simulation Platform .. 56

	

	5.6.1 Network ... 56
	5.6.1 Network ... 56
	5.6.1 Network ... 56

	

	5.6.2 Demand ... 56
	5.6.2 Demand ... 56
	5.6.2 Demand ... 56

	

	5.6.3 Measures of Effectiveness ... 56
	5.6.3 Measures of Effectiveness ... 56
	5.6.3 Measures of Effectiveness ... 56

	

	5.6.4 Code .. 57
	5.6.4 Code .. 57
	5.6.4 Code .. 57

	

	5.7 Results ... 57
	5.7 Results ... 57
	5.7 Results ... 57

	

	5.7.1 Hyperparameter Tuning Results .. 57
	5.7.1 Hyperparameter Tuning Results .. 57
	5.7.1 Hyperparameter Tuning Results .. 57

	

	5.7.2 Traffic Controller Performance Comparison ... 59
	5.7.2 Traffic Controller Performance Comparison ... 59
	5.7.2 Traffic Controller Performance Comparison ... 59

	

	5.8 Conclusion .. 64
	5.8 Conclusion .. 64
	5.8 Conclusion .. 64

	

	Chapter 6. Grid Network Deep Reinforcement Learning Traffic Signal Control with Incidents ..65
	Chapter 6. Grid Network Deep Reinforcement Learning Traffic Signal Control with Incidents ..65
	Chapter 6. Grid Network Deep Reinforcement Learning Traffic Signal Control with Incidents ..65

	

	6.1 Overview ... 65
	6.1 Overview ... 65
	6.1 Overview ... 65

	

	6.2 Literature Review ... 65
	6.2 Literature Review ... 65
	6.2 Literature Review ... 65

	

	6.3 Incident Generation ... 67
	6.3 Incident Generation ... 67
	6.3 Incident Generation ... 67

	

	6.4 New State .. 68
	6.4 New State .. 68
	6.4 New State .. 68

	

	6.5 Simulation Settings ... 68
	6.5 Simulation Settings ... 68
	6.5 Simulation Settings ... 68

	

	6.5.1 Network ... 69
	6.5.1 Network ... 69
	6.5.1 Network ... 69

	

	6.5.2 Demand ... 70
	6.5.2 Demand ... 70
	6.5.2 Demand ... 70

	

	6.6 Hyperparameter Tuning .. 71
	6.6 Hyperparameter Tuning .. 71
	6.6 Hyperparameter Tuning .. 71

	

	6.7 Results ... 71
	6.7 Results ... 71
	6.7 Results ... 71

	

	6.7.1 Hyperparameter Tuning Results .. 71
	6.7.1 Hyperparameter Tuning Results .. 71
	6.7.1 Hyperparameter Tuning Results .. 71

	

	6.7.2 Controller Performance Comparison ... 76
	6.7.2 Controller Performance Comparison ... 76
	6.7.2 Controller Performance Comparison ... 76

	

	6.8 Conclusion .. 86
	6.8 Conclusion .. 86
	6.8 Conclusion .. 86

	

	Chapter 7. Summary and Conclusions ..89
	Chapter 7. Summary and Conclusions ..89
	Chapter 7. Summary and Conclusions ..89

	

	7.1 Summary ... 89
	7.1 Summary ... 89
	7.1 Summary ... 89

	

	7.2 Directions for Future Research ... 90
	7.2 Directions for Future Research ... 90
	7.2 Directions for Future Research ... 90

	

	Chapter 8. Glossary ...93
	Chapter 8. Glossary ...93
	Chapter 8. Glossary ...93

	

	Chapter 9. References ..94
	Chapter 9. References ..94
	Chapter 9. References ..94

	

	Appendix 1: SUMO Network Generation Script ..99
	Appendix 1: SUMO Network Generation Script ..99
	Appendix 1: SUMO Network Generation Script ..99

	

	Appendix 2: Developed Traffic Demand Generating Script ...100
	Appendix 2: Developed Traffic Demand Generating Script ...100
	Appendix 2: Developed Traffic Demand Generating Script ...100

	

	Appendix 3: DQN Hyperparameter Tuning Results for Single Intersection Network101
	Appendix 3: DQN Hyperparameter Tuning Results for Single Intersection Network101
	Appendix 3: DQN Hyperparameter Tuning Results for Single Intersection Network101

	

	Appendix 4: Max-pressure Hyperparameter Tuning Results for Single Intersection Network ...107
	Appendix 4: Max-pressure Hyperparameter Tuning Results for Single Intersection Network ...107
	Appendix 4: Max-pressure Hyperparameter Tuning Results for Single Intersection Network ...107

	

	Appendix 5: Uniform Hyperparameter Tuning Results for Single Intersection Network .108
	Appendix 5: Uniform Hyperparameter Tuning Results for Single Intersection Network .108
	Appendix 5: Uniform Hyperparameter Tuning Results for Single Intersection Network .108

	

	Appendix 6: Webster’s Hyperparameter Tuning Results for Single Intersection Network109
	Appendix 6: Webster’s Hyperparameter Tuning Results for Single Intersection Network109
	Appendix 6: Webster’s Hyperparameter Tuning Results for Single Intersection Network109

	

	Appendix 7: Hyperparameter Tuning Results: DQN in Corridor Network with 6,000 Traffic Demand and Incident ...112
	Appendix 7: Hyperparameter Tuning Results: DQN in Corridor Network with 6,000 Traffic Demand and Incident ...112
	Appendix 7: Hyperparameter Tuning Results: DQN in Corridor Network with 6,000 Traffic Demand and Incident ...112

	

	Appendix 8: Hyperparameter Tuning Results: Max-pressure in Corridor Network with 6,000 Traffic Demand and Incident ...113
	Appendix 8: Hyperparameter Tuning Results: Max-pressure in Corridor Network with 6,000 Traffic Demand and Incident ...113
	Appendix 8: Hyperparameter Tuning Results: Max-pressure in Corridor Network with 6,000 Traffic Demand and Incident ...113

	

	Appendix 9: Hyperparameter Tuning Results: Uniform in Corridor Network with 6,000 Traffic Demand and Incident ...114
	Appendix 9: Hyperparameter Tuning Results: Uniform in Corridor Network with 6,000 Traffic Demand and Incident ...114
	Appendix 9: Hyperparameter Tuning Results: Uniform in Corridor Network with 6,000 Traffic Demand and Incident ...114

	

	Appendix 10: Hyperparameter Tuning Results: Webster’s in Corridor Network with 6,000 Traffic Demand and Incident ...115
	Appendix 10: Hyperparameter Tuning Results: Webster’s in Corridor Network with 6,000 Traffic Demand and Incident ...115
	Appendix 10: Hyperparameter Tuning Results: Webster’s in Corridor Network with 6,000 Traffic Demand and Incident ...115

	

	Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid with 6,000 Traffic Demand and Incident ..118
	Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid with 6,000 Traffic Demand and Incident ..118
	Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid with 6,000 Traffic Demand and Incident ..118

	

	Appendix 12: Hyperparameter Tuning Results: Max-pressure in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...119
	Appendix 12: Hyperparameter Tuning Results: Max-pressure in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...119
	Appendix 12: Hyperparameter Tuning Results: Max-pressure in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...119

	

	Appendix 13: Hyperparameter Tuning Results: Uniform in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...120
	Appendix 13: Hyperparameter Tuning Results: Uniform in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...120
	Appendix 13: Hyperparameter Tuning Results: Uniform in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...120

	

	Appendix 14: Hyperparameter Tuning Results: Webster’s in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...121
	Appendix 14: Hyperparameter Tuning Results: Webster’s in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...121
	Appendix 14: Hyperparameter Tuning Results: Webster’s in 2x2 Grid Network with 6,000 Traffic Demand and Incident ...121

	

	Appendix 15: Hyperparameter Tuning Results For DQN in 2x2 Grid Network with 6,000 Traffic Demand and No Incident ...124
	Appendix 15: Hyperparameter Tuning Results For DQN in 2x2 Grid Network with 6,000 Traffic Demand and No Incident ...124
	Appendix 15: Hyperparameter Tuning Results For DQN in 2x2 Grid Network with 6,000 Traffic Demand and No Incident ...124

	

	Appendix 16: Hyperparameter Tuning Results For Max-pressure in 2x2 Grid Network with 6,000 Traffic Demand and No Incident ...125
	Appendix 16: Hyperparameter Tuning Results For Max-pressure in 2x2 Grid Network with 6,000 Traffic Demand and No Incident ...125
	Appendix 16: Hyperparameter Tuning Results For Max-pressure in 2x2 Grid Network with 6,000 Traffic Demand and No Incident ...125

	

	Appendix 17: Hyperparameter Tuning Results For Uniform in 2x2 Grid Network with 6,000 Traffic Demand and No Incident..126
	Appendix 17: Hyperparameter Tuning Results For Uniform in 2x2 Grid Network with 6,000 Traffic Demand and No Incident..126
	Appendix 17: Hyperparameter Tuning Results For Uniform in 2x2 Grid Network with 6,000 Traffic Demand and No Incident..126

	

	Appendix 18: Hyperparameter Tuning Results For Websters in 2x2 Grid Network with 6,000 Traffic Demand and No Incident..127
	Appendix 18: Hyperparameter Tuning Results For Websters in 2x2 Grid Network with 6,000 Traffic Demand and No Incident..127
	Appendix 18: Hyperparameter Tuning Results For Websters in 2x2 Grid Network with 6,000 Traffic Demand and No Incident..127

	

	

	
	List of Figures
	List of Figures
	Figure 3-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018) 17
	Figure 3-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018) 17
	Figure 3-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018) 17

	

	Figure 3-2. Bus line simulation demonstration Algorithm: Q-learning 21
	Figure 3-2. Bus line simulation demonstration Algorithm: Q-learning 21
	Figure 3-2. Bus line simulation demonstration Algorithm: Q-learning 21

	

	Figure 3-3. Deep neural network with three hidden layers (https://www.ibm.com/cloud/learn/neural-networks) ... 22
	Figure 3-3. Deep neural network with three hidden layers (https://www.ibm.com/cloud/learn/neural-networks) ... 22
	Figure 3-3. Deep neural network with three hidden layers (https://www.ibm.com/cloud/learn/neural-networks) ... 22

	

	Figure 3-4. Algorithm: Q-learning with DQN ... 23
	Figure 3-4. Algorithm: Q-learning with DQN ... 23
	Figure 3-4. Algorithm: Q-learning with DQN ... 23

	

	Figure 3-5. Algorithm: Deep Q-learning with Experience Replay and Target Network 26
	Figure 3-5. Algorithm: Deep Q-learning with Experience Replay and Target Network 26
	Figure 3-5. Algorithm: Deep Q-learning with Experience Replay and Target Network 26

	

	Figure 4-1. Settings of Stopping Vehicle in Route File .. 32
	Figure 4-1. Settings of Stopping Vehicle in Route File .. 32
	Figure 4-1. Settings of Stopping Vehicle in Route File .. 32

	

	Figure 4-2. Pseudocode for the Simulation Framework ... 33
	Figure 4-2. Pseudocode for the Simulation Framework ... 33
	Figure 4-2. Pseudocode for the Simulation Framework ... 33

	

	Figure 4-3. 4x4 Grid Network with Traffic Incident .. 34
	Figure 4-3. 4x4 Grid Network with Traffic Incident .. 34
	Figure 4-3. 4x4 Grid Network with Traffic Incident .. 34

	

	Figure 4-4. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles 35
	Figure 4-4. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles 35
	Figure 4-4. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles 35

	

	Figure 5-1. Algorithm: Deep Q-learning with Experience Replay and Target Network 47
	Figure 5-1. Algorithm: Deep Q-learning with Experience Replay and Target Network 47
	Figure 5-1. Algorithm: Deep Q-learning with Experience Replay and Target Network 47

	

	Figure 5-2. Hyperparameter tuning results for each controller... 57
	Figure 5-2. Hyperparameter tuning results for each controller... 57
	Figure 5-2. Hyperparameter tuning results for each controller... 57

	

	Figure 5-3. Hyperparameter tuning results for all controllers in one graph 58
	Figure 5-3. Hyperparameter tuning results for all controllers in one graph 58
	Figure 5-3. Hyperparameter tuning results for all controllers in one graph 58

	

	Figure 5-4. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand .. 60
	Figure 5-4. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand .. 60
	Figure 5-4. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand .. 60

	

	Figure 5-5. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand .. 60
	Figure 5-5. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand .. 60
	Figure 5-5. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand .. 60

	

	Figure 5-6. Frequency of phase selection in one simulation for DQN controller with 6,000 Demand ... 61
	Figure 5-6. Frequency of phase selection in one simulation for DQN controller with 6,000 Demand ... 61
	Figure 5-6. Frequency of phase selection in one simulation for DQN controller with 6,000 Demand ... 61

	

	Figure 5-7. Frequency of phase selection in one simulation for Max-pressure controller with 6,000 Demand ... 62
	Figure 5-7. Frequency of phase selection in one simulation for Max-pressure controller with 6,000 Demand ... 62
	Figure 5-7. Frequency of phase selection in one simulation for Max-pressure controller with 6,000 Demand ... 62

	

	Figure 5-8. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand .. 63
	Figure 5-8. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand .. 63
	Figure 5-8. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand .. 63

	

	Figure 5-9. Intersection Level Performance Comparison of DQN and Non-learning Controllers with 4,000 Demand .. 63
	Figure 5-9. Intersection Level Performance Comparison of DQN and Non-learning Controllers with 4,000 Demand .. 63
	Figure 5-9. Intersection Level Performance Comparison of DQN and Non-learning Controllers with 4,000 Demand .. 63

	

	Figure 6-1. Corridor with two intersections .. 69
	Figure 6-1. Corridor with two intersections .. 69
	Figure 6-1. Corridor with two intersections .. 69

	

	Figure 6-2. 2x2 Grid Network .. 70
	Figure 6-2. 2x2 Grid Network .. 70
	Figure 6-2. 2x2 Grid Network .. 70

	

	Figure 6-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Separate Graph) ... 72
	Figure 6-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Separate Graph) ... 72
	Figure 6-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Separate Graph) ... 72

	

	Figure 6-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Separate Graph) ... 73
	Figure 6-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Separate Graph) ... 73
	Figure 6-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Separate Graph) ... 73

	

	Figure 6-5. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Combined Graph) .. 73
	Figure 6-5. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Combined Graph) .. 73
	Figure 6-5. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Combined Graph) .. 73

	

	Figure 6-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Combined Graph) .. 74
	Figure 6-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Combined Graph) .. 74
	Figure 6-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Combined Graph) .. 74

	

	Figure 6-7. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Separate Graph) .. 75
	Figure 6-7. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Separate Graph) .. 75
	Figure 6-7. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Separate Graph) .. 75

	

	Figure 6-8. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Combined Graph) ... 75
	Figure 6-8. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Combined Graph) ... 75
	Figure 6-8. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Combined Graph) ... 75

	

	Figure 6-9. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 76
	Figure 6-9. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 76
	Figure 6-9. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 76

	

	Figure 6-10. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 77
	Figure 6-10. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 77
	Figure 6-10. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 77

	

	Figure 6-11. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 77
	Figure 6-11. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 77
	Figure 6-11. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 77

	

	Figure 6-12. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 78
	Figure 6-12. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 78
	Figure 6-12. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 78

	

	Figure 6-13. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 79
	Figure 6-13. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 79
	Figure 6-13. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 79

	

	Figure 6-14. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 79
	Figure 6-14. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 79
	Figure 6-14. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 79

	

	Figure 6-15. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80
	Figure 6-15. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80
	Figure 6-15. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80

	

	Figure 6-16. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80
	Figure 6-16. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80
	Figure 6-16. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 80

	

	Figure 6-17. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 81
	Figure 6-17. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 81
	Figure 6-17. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 81

	

	Figure 6-18. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 82
	Figure 6-18. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 82
	Figure 6-18. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 82

	

	Figure 6-19. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 82
	Figure 6-19. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 82
	Figure 6-19. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 82

	

	Figure 6-20. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 83
	Figure 6-20. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 83
	Figure 6-20. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 83

	

	Figure 6-21. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 83
	Figure 6-21. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 83
	Figure 6-21. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 83

	

	Figure 6-22. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 84
	Figure 6-22. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 84
	Figure 6-22. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 84

	

	Figure 6-23. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 84
	Figure 6-23. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 84
	Figure 6-23. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 84

	

	Figure 6-24. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 85
	Figure 6-24. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 85
	Figure 6-24. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 85

	

	Figure 6-25. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network (with further training) ... 86
	Figure 6-25. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network (with further training) ... 86
	Figure 6-25. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network (with further training) ... 86

	

	Figure 6-26. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network(with further training) ... 86
	Figure 6-26. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network(with further training) ... 86
	Figure 6-26. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network(with further training) ... 86

	

	

	
	List of Tables
	List of Tables
	Table 5-1. Hyperparameters tuned in DQN .. 51
	Table 5-1. Hyperparameters tuned in DQN .. 51
	Table 5-1. Hyperparameters tuned in DQN .. 51

	

	Table 5-2. Parameters in DQN including hyperparameter values .. 55
	Table 5-2. Parameters in DQN including hyperparameter values .. 55
	Table 5-2. Parameters in DQN including hyperparameter values .. 55

	

	Table 5-3. Hyperparameters for non-learning controllers .. 55
	Table 5-3. Hyperparameters for non-learning controllers .. 55
	Table 5-3. Hyperparameters for non-learning controllers .. 55

	

	Table 6-1. Parameters used in DQN controller for the corridor and grid network 71
	Table 6-1. Parameters used in DQN controller for the corridor and grid network 71
	Table 6-1. Parameters used in DQN controller for the corridor and grid network 71

	

	

	
	
	
	EX
	EX
	E
	CUTIVE
	SUMMARY
	

	Traffic signal control is a crucial element of urban mobility that profoundly influences transportation network efficiency and safety. Traditional traffic signal control systems rely on fixed-time or actuated signal timings, often failing to adapt to dynamic traffic demands and congestion patterns. This technical report explores the application of Reinforcement Learning (RL) algorithms to traffic signal control, aiming to enhance traffic flow efficiency and alleviate congestion.
	The research develops a simulation model of a signalized intersection and trains RL agents to dynamically adjust signal timings based on real-time traffic conditions. These RL agents are designed to learn from experience, adapt to changing traffic patterns, and optimize traffic flow, even in scenarios with unexpected traffic incidents.
	The study examines the benefits of RL algorithms in optimizing traffic signal control, both in scenarios with and without traffic incidents. To achieve this, an incident generation module is integrated into an open-source traffic signal performance simulation framework that relies on the Simulation of Urban MObility SUMO software. This module introduces the presence of emergency response vehicles and randomly generates traffic incidents within the network. By exposing RL agents to this environment, they can
	Initially, the research focuses on a single intersection scenario, employing the DQN algorithm to form the RL agent traffic signal controller. The training process is enhanced through the utilization of experience replay and target network techniques, addressing the limitations of the DQN algorithm. Hyperparameter tuning identifies the optimal parameter combination for training, with results showcasing the superiority of DQN over other controllers in terms of system-wide and intersection-specific queue dist
	The study is subsequently extended to encompass a small corridor featuring two intersections and a grid network with a 2x2 intersection configuration. The incident generation module introduces various traffic scenarios to the RL agent, and once again, hyperparameter tuning confirms the DQN model's effectiveness in reducing congestion and enhancing system performance. Robustness testing under varying demands demonstrates the consistent performance of the DQN model.
	In summary, this technical report underscores the potential of RL algorithms in optimizing traffic signal control, both in scenarios with and without traffic incidents. The incident generation module creates a realistic learning environment for RL agents, resulting in improved system performance and reduced congestion. Furthermore, the importance of hyperparameter tuning is emphasized as a critical component in establishing a strong foundation for RL training processes.
	
	Chapter 1.
	Chapter 1.
	Introduction
	

	Traffic signal systems play an essential role in the transportation network to minimize the number of traffic accidents and maintain orderly traffic flow. Traffic signal control methods include three broad categories: pretimed control, actuated control, and adaptive control. Pretimed control has fixed cycle lengths and phasing, so it is not responsive to traffic demand fluctuations. Actuated control is designed to respond to variable traffic demands but the nature of the potential response is constrained b
	With the explosive development of computing power and data accessibility, as well as the advanced development of artificial intelligent (AI), there are more possibilities to improve existing traffic signal control performance (Winston, 1992; Russell and Norvig, 2002). Three categories of AI technologies have been used commonly: supervised learning, unsupervised learning, and reinforcement learning. Because of the characteristics of the traffic signal control problems, reinforcement learning fits our needs
	Deep Q-learning is one of the most commonly used methods in reinforcement learning because of its ease of implementation and better performance as the data scale increases. Deep Q-leaning is a combination of Q-learning and deep neural network. Q-learning represents a method to use a determined or approximated Q-table to guide the actions of the agents. With the training process, the Q-table is updated and reaches convergence so that every action taken in the future will be the best choice of the agent in or
	Combined with deep learning, reinforcement learning can explore more complicated relationships between the agents and their environment to provide potentially better performance (LeCun et al., 2015; Goodfellow et al., 2016; Kamilaris and Prenafeta-Boldú, 2018). Deep learning relies on a neural network, which mimics the thinking and decision-making process of neuron activation (Wang, 2003; Abiodun et al., 2018). The more layers of the neural network used, the more complicated patterns between the inputs and
	For a complicated problem, a deterministic Q-table is impossible to generate so a deep neural network is utilized to approximate the Q-table. Rather than having a concrete Q-table, deep Q-learning uses the neural network between the inputs and outputs to approximately
	represent the Q-table. Therefore, the training process will update the coefficients associated with the neural network to improve the prediction accuracy.
	Although considerable research has focused on using deep Q-learning to improve the performance of actuated traffic signals in a network, one key question has not been targeted yet. That is how disruptions within the network should be addressed. The concern is that traffic signal control based on deep Q-learning and normal traffic condition settings might not be able to adequately respond to traffic flow disruptions caused by traffic incidents (crashes, disabled vehicles or objects dropped on the roadway). T
	1.1 Problem Statement
	Without testing the performance when traffic incidents occur, the robustness of the deep Q-learning traffic signal control for the network cannot be guaranteed. When traffic incidents occur, the network will suffer a sharp and temporary capacity shortage on the involved link(s) causing diversion to other links. Traffic signal timing is the only practical means of responding to incident disruptions to reduce the negative impact of traffic incidents. Due to the complexity of the network problems, operators fr
	The core problem of the traffic incident case is sudden unmatched travel demand and supply. If traffic signals can utilize the real-time objective inputs from their environment, including traffic flows and intersection performance (e.g., queue length and total control delays), to take actions quickly enough, the network performance could be improved immediately.
	Reinforcement learning methods promise to provide solutions for this kind of problem. Each AI agent keeps exploring the relationship between traffic signal control and vehicle queue length in its intersection and once the knowledge collected is enough to produce an accurate approximation, the action chosen by the AI agent (maintain the current phase or shift to another phase) will maximize the improvement of the intersection performance in terms of the chosen measure of effectiveness such as queue length or
	If the agent has never experienced traffic incident impacts, it must encounter the situation enough times to “understand” the impact of incidents and how to take optimal actions responsively. Creating traffic incidents in the real network to train the deep Q-learning algorithm is problematic so the simulation method comes in handy. There are no available simulation tools on the market to allow users to combine the application of reinforcement learning and traffic network incidents.
	This study is to fill this gap. By developing an incident responsive network in an open-source microscopic simulator and exploring the advanced deep Q-learning method, a robust AI-assisted actuated traffic signal control system will be developed.
	1.2 Objectives
	The objectives of this dissertation include the following key components:
	1. Build a traffic incident responsive simulator based on an open-source microscopic traffic simulation software system. This simulator will characterize an incident occurring in the network and blocking a lane that is part of a link. In addition, the simulator will simulate the impact of emergency service vehicles (an abstraction of police cars, EMS, etc.) in response to the incident. In this way, the full impact of the incident and the rescue process can be evaluated quantitatively based on traditional me
	2. A deep Q-learning model will be developed and trained with the data from the simulation process. The proposed deep Q-learning method will take advantage of the most advanced methods in the market, including the prioritized experience replay and dueling network. The deep Q-learning model will be trained in a single intersection without traffic incidents.
	3. The well-trained deep Q-learning model will be applied to all the traffic signals of a grid network where all intersections are identical to the single intersection in the previous study and the network will encounter traffic incidents occurring randomly in time and location. Transfer learning methods will be applied to reduce the calculation tasks to allow the deep Q-learning model to perform well in a different environment.
	1.3 Expected Contributions
	To achieve these goals, this study explores the application of RL, specifically Q-learning integrated with deep neural networks, to enhance traffic signal control. It explores RL's capacity to enhance traffic flow and alleviate congestion, effectively addressing the shortcomings of conventional fixed-time and actuated signal systems.
	1.4 Report Overview
	This dissertation is organized as follows. Chapter 1 describes the motivation, problem statement, objectives, and research scope. Chapter 2 is a comprehensive literature review of the history of traffic signal control, the common framework of traffic signal control, and the most advanced research on traffic signal control based on reinforcement learning methods. Chapter 3 presents the proposed deep Q-learning model as well as advanced tools to improve its performance. Chapter 4 explains the open-source micr
	Chapter 2.
	Chapter 2.
	Literature Review
	

	2.1 Introduction
	An intersection is where vehicle paths cross sharing a common space. In earlier days, there were no traffic control devices to facilitate the common space sharing, so users had to compete for the right of way. To improve safety and facilitate orderly space sharing, traffic control devices were introduced. Traffic control signals are commonly used by agencies to improve intersection safety and operational efficiency.
	Generally, signalized intersections accommodate all ground transportation modes, including passenger cars, bicycles, and pedestrians. However, the purpose of this paper is building fundamental reinforcement learning traffic signal control based on simulation methods so only passenger cars are considered throughout the paper.
	The following section summarizes important literature for the development of traffic signal control methods, including pretimed, actuated, adaptive, and machine learning control.
	2.2 Traditional Traffic Signal Control Methods
	The basic logic behind traffic signal timing is to provide optimal amounts of green signal time to conflicting movements to reduce conflicts and decrease the likelihood of traffic accidents and to improve efficiency usually measured by fewer delays.
	There are three types of traffic signal control methods commonly used today: pretimed, actuated, and adaptive. None of them is superior to the others since they perform different roles for different types of intersections as well as traffic arrival patterns. Therefore, all of them can have a significant impact on the traffic network in terms of safety and efficiency.
	2.2.1 Pretimed Signal Control
	 Pretimed traffic signal control is defined as a predetermined traffic signal schema with fixed green time for each phase as well as fixed cycle length and fixed phase patterns. The signal cycle length needs to be tuned to minimize the control delay and the green time split for each approach is normally based on the flow ratios between different phases (Kell and Fullerton, 1991).
	Pretimed traffic signal control methods are commonly used for both isolated intersections and networks (Bell, 1992; Slinn et al., 1998). Webster proposed a closed-form formula to split the green time proportionally by taking into account the historical traffic flow ratios between phases (Webster, 1958). The cycle length is tuned based on the characteristics of the intersection to minimize the total delay. No real-time data from the field is required and the historical traffic flow needs to be aggregated.
	Coordination of pretimed controllers to produce traffic progression can improve network efficiency decreasing unnecessary stops and reducing delays. The GreenWave was developed (Roess et al., 2004) as an extension of the Webster methods by considering the travel time at a chosen speed between intersections (called offset) to reduce numbers of vehicular stops. This
	method requires all associated intersections to have the same cycle length, which is usually the maximum cycle length from all intersections.
	Practitioners have developed different types of extensions of pretimed traffic signal control. For example, intersections could have different pretimed traffic signal schemes during different times of the day and different schemes for weekdays and weekends (Mirchandani and Head, 2001). Instead of having only one signal plan for a specific intersection, as many as 20 different plans could be applied and could be automatically chosen by the signal controller based on either time of day or traffic demand (Roe
	Pretimed signal control is an offline method which means there is no need to collect any real-time information from the field. It relies on historical traffic data to adjust the green time split, cycle length, and phase patterns. It is easy to maintain compared to other more advanced traffic signal control methods which require field data, including flow and queue length to tune their parameters. Therefore, pretimed signal control is still the most commonly applied method in the traffic network.
	2.2.2 Actuated Signal Control
	Since traffic demand constantly varies, the basic objective of signal control is to accommodate demand variability. Pretimed methods can address this variability by choosing among many stored timing plans by time of day or volume thresholds (if detection is provided). Actuated signal control measures real time traffic flows for all actuated phases and is designed to be flexible enough to change green times in response to demand (Fellendorf, 1994). Every actuated phase has a maximum green time so if deman
	Actuated signal control collects real time data from the intersection approaches, such as queue length or traffic flow, to extend the current phase duration or terminate the current phase to start the next phase as needed. In actuated traffic signal control, several key components could be varied, including phase sequences, green time for each phase, and cycle length, which does not coordinate with other adjacent intersections (Roess, 2004).
	The benefits of implementing actuated signal control are obvious. It can adjust the current plan to the varied traffic conditions, such as flow fluctuation or changing traffic demand patterns, to minimize control delay and improve efficiency. It is recommended to use actuated traffic control in a non-oversaturated traffic flow scenario. Because if the traffic flow is approaching the capacity of the road and stable, especially during the peak hours, pretimed signal control programmed proportionally to the cr
	Semi-actuated control refers to actuated control with detectors only on the minor road so the green rests on the major road until a vehicle is detected on the minor road. In this way, the associated intersection can maintain the green time for the major road and also provide service to
	the minor street when needed. This method is appropriate for intersections where the traffic pattern has a noticeable difference in volume from the major and minor roads. If the actuated green phase for the minor roads is called too many times, the vehicles from the major roads suffer significant delay and more stops, which is against the purpose of implementing the semi-actuated control.
	Fully actuated control includes detectors for all signal phases and allows real time adjustment of the signal plan to accommodate traffic for all intersection approaches rather than only the minor roads. By taking into account real time traffic flow from detectors, the signal plan can extend or terminate any phase as needed. This helps the intersection to respond to varied traffic flow from all approaches (Lin, 1985).
	Researchers have investigated methods of using actuated control in coordinated networks, however, as noted earlier, coordination methods generally require actuated control to limit the flexibility they are designed to provide. Two famous fully actuated signal control methods are Self-Organizing Traffic Light (SOTL) and max pressure. Self-organization used here represents the concept of signal control for intersections in a network that can interact with each adjacent one and achieve dynamically a global op
	Max pressure control was introduced into actuated signal control (Varaiya, 2013). This method monitors the pressure from all approaches, as the difference between flow for incoming lanes and outgoing lanes of each approach, and chooses the maximum pressure releasing phase to allow the maximum number of vehicles to enter the intersection and hence ensure the minimum pressure for the phase duration. This method requires vehicle flow information from adjacent intersections as a precise measure of the pressure.
	Actuated control could be categorized into two broad classes, including isolated and coordinated. Isolated intersections with actuated control only focus on improving efficiency and safety of one intersection, while coordinated intersections will deploy a reasonable offset and other parameters to reduce the unnecessary stops and delay for the coordinated network.
	Semi-actuated can be used for an arterial corridor since the major traffic flow would use the arterial street and minor cross streets would be served with green only when needed (Skabardonis, 1998). The majority of the green time and capacity should be assigned to the corridor rather than the minor movements. Fully actuated control would be most beneficial for isolated intersections where traffic demands from all approaches vary heavily.
	Implementing actuated signal control to adjust the control plan in real-time has limitations. A complicated program must be provided for the controllers to take the inputs and adjust the control plan accordingly. The cost of installation is more expensive than pretimed
	signal control and maintenance costs are another problem. The induction loop detectors commonly used in these methods are installed under the pavement surface and if the pavement structure moves either vertically or horizontally the inductance loop detector wires break and the cost of replacing them is not trivial.
	2.2.3 Adaptive Signal Control
	Adaptive signal control refers to the technology that collects real-time data from the installed detectors to dynamically determine green phase and its duration in response to current and predicted future traffic demands based on programmed algorithms to increase the performance of the intersections.
	Adaptive signal control is considered to be advantageous over actuated signal control for providing lower control delay and better intersection throughput performance (Gayah, 2014). The key component of adaptive signal control is to dynamically adjust the parameters based on the future traffic flow prediction (Klein, 2001). The most famous traffic signal control frameworks based on adaptive signal control include TRANSYT, Split Cycle Offset Optimization Technique (SCOOT), Sydney Coordinated Adaptive Traffi
	In 1969, Robertson proposed a fixed-time traffic signal control algorithm based on the traffic flow passing through a road network to minimize the sum of the average queues in the network (Robertson, 1969). It is an off-line method that uses macro-simulation since it relies on historic flow data. It was one of the earliest traffic signal control methods that relied on a digital computer program to help researchers and practitioners to optimize the traffic signal control, including offset and green time spli
	The core components in TRANSYT are based on cyclic flow profiles (CFP) that estimate queue lengths based on historic data so to evaluate the performance of alternative signal timings. The CFP measures the one-way traffic flow from one approach and averages the flow over a specific duration. The estimated queue length and clearing time from the CFP are used to predict the impact of offset and green splits to find the best signal timing parameters.
	Based on the TRANSYT, SCOOT was introduced to overcome some of the limitations of TRANSYT (Hunt, 1981). As mentioned before, TRANSYT is an offline method and relies on historic data. In contrast, SCOOT takes advantage of technology development as vehicle sensors have become available. Detectors are installed upstream to obtain traffic flow information so to improve the estimation of queue length accuracy. In addition, since SCOOT relies on real-time traffic information and calculates the signal timing param
	SCATS was introduced in Sydney, Australia in 1990. It utilizes the traffic flow inputs collected by installed detectors to understand the real-time traffic. It also has a library that records the pre-defined signal plans based on the traffic flow patterns to help dynamically adjust the signal timing parameters in a short period. The adjustable parameters include phase split, cycle length, and offsets (Lowrie, 1990). SCATS has been implemented in Australia for controlling more than 1,800 signals and has achi
	In the early 80s, researchers at the University of Lowell with support from the U.S. Department of Transportation developed OPAC, varying signal timing plans dynamically to accommodate real-time traffic demand patterns. It ignores the cycle concept and only considers the split time of sequential phases by either extending the current phase or starting the next phase earlier (Gartner, 2002). Implementation of this method requires predetermining the phases for each intersection. To improve performance, OPAC c
	RHODES is another famous adaptive signal control framework that can be implemented for a distributed system. RHODES utilizes an hierarchical control structure for connecting different components in traffic signal optimizing problems, including network loading, network flow estimation, and traffic signal control activation by exploiting the modern technologies and availability of real-time data (Head, 1992). RHODES not only considers the software for traffic signal control, but also the hardware components,
	To reduce the costs of installation and operation while keeping the benefits of traditional adaptive signal control frameworks, the Federal Highway Administration (FHWA) (Ghaman, 2007) developed ASC Lite to integrate the process of traffic flow monitoring and signal plan optimizing accordingly. ASC Lite focuses on linear and arterial networks. The developed control module has been included in the CORSIM simulation software for users to deploy and test their signal timing strategies.
	Performance of ASC Lite has been evaluated (Shelby, 2008) by field implementation, including Gahanna, OH, Houston, TX, Bradenton, FL, and EI Cajon, CA. The evaluation shows that ASC Lite has been demonstrated effective in terms of reduction of delay, arterial travel time, fuel consumption, and vehicle stops. In addition, ASC Lite was also evaluated by field implementation in Albany, New York, showing that the system provided benefits of delay reduction in the core area of the analytical network, but not the
	In conclusion, adaptive signal control has attracted a large number of researchers and practitioners to develop various frameworks and test their performance in real scenarios.
	Evolution of these strategies is mainly due to modern technologies and algorithms, including faster computing machines and more efficient mathematical algorithms. With the rapid development of learning algorithms and lower costs of data storage and computing, reinforcement learning has been adopted to improve signal control performance.
	2.3 Reinforcement Learning Traffic Signal Control
	Machine learning tackles the problems that relate to detecting patterns and drawing conclusions from historic experience. Reinforcement learning, one of the most famous machine learning techniques, focuses on optimization problems by directly converting input data into action choices without modeling the environment. For example, in the traffic signal control process, the adaptive control methods require the prediction of the queue length or vehicle arrival patterns from the adjacent network through mathema
	Reinforcement learning collects experience from the interaction between an agent and its environment. Without building a model for the environment, the agent could extract useful information from the environment and use trial and error to come up with a solution to improve its behavior to achieve a long-term goal (Sutton and Barto, 2018).
	Reinforcement learning includes model-free and model-based algorithms. In our scenario, where traffic signal control responds to varying traffic demand, model-based algorithms will require modelers to pre-specify the models for the intersection as well as the vehicle arrival patterns, which is difficult. Therefore, model-free approaches achieve a significant focus in the traffic signal control field, especially Q-learning. The Q-learning agent, the signal controller, collects the state from its interacting
	2.3.1 Isolated Intersections
	Abdulhai (2003) proposed a simple yet powerful Q-learning model for traffic signal control associated with an isolated intersection. The traffic demand contains two straight movements, including east-west and north-south. The state includes the queue lengths from all approaches as well as the elapsed green time of the current phase. The traffic control agent can choose two actions, either remain in the current phase or shift to the next one. Cycle length was not fixed but minimum and maximum green splits ar
	controller performed on a par with the pretimed signal control, however, when the traffic becomes variable, the Q-learning controller reduced system delay by 40% on average. This research laid the foundation for implementing Q-learning in the traffic signal control field.
	El-Tantawy et al. extended Abdulhai’s work by fine-tuning the parameters used in the Q-learning traffic signal control model with a real case study in Downtown Toronto in a simulation environment (El-Tantawy et al., 2014). The proposed model outperformed optimized pretimed traffic signal control and actuated signal control by saving about 50% average vehicle delay.
	One limitation of the Q-learning signal controller mentioned above is that the model requires the full representation of the state collected from the intersection. If the model is extended to the network level, this method would not be able to be computed efficiently. To tackle this limitation, Prashanth and Shalabh (Prashanth, 2010) developed a Q-learning technique with a function approximation method to reduce the size of inputs and significantly reduce the computing time to get the model to converge to o
	Lu et al. evaluated the performance of Q-learning for an isolated intersection with transition curve theory to estimate the delay for each approach (Lu et al., 2008). The state is total delay for the single intersection. The action sets include four phases with 2 seconds interval alternation. The reward function is the same as the state, which is total intersection delay. The proposed model was compared with the fixed signal settings and the results show a car in the system can save 21 seconds per cycle.
	Chin et al. also applied a Q-learning algorithm to an isolated intersection. The state is the different levels of queue length and the number of phases in the signal plan (Chin et al., 2011). Actions were defined by the green time choice of each phase in a 5-second duration. Rewards were measured by the number of vehicles in the queue from all approaches. Various traffic conditions including flow saturation levels were examined in the simulations. The results showed that total delay could be reduced even in
	2.3.2 Coordinated Intersections
	Rather than focusing on improving the performance of adaptive signal control on an isolated intersection with the help of Q-learning algorithms, some research explored its benefits in the context of the transportation network with multiple intersections.
	Balaji et al. designed a distributed multi-agent-based Q-learning traffic signal control for improving the existing adaptive signal control in an urban arterial network in the Central Business District of Singapore (29 intersections) to reduce the total delay and travel time (Balaji et al., 2010). Data collected from all intersections share information with adjacent intersections so the expected vehicle arrival patterns could be evaluated accurately. Parameters used in the model were fine-tuned with real-ti
	Simulation results showed significant delay reduction compared to other network traffic control systems.
	Abdoos et al. explored the performance of multi-agent Q-learning for the network where peak traffic patterns do not appear and conventional traffic signal timing does not provide an efficient solution (Abdoos et al., 2011). Average queue length from all approaches in a fixed cycle was used as the state representation in the Q-learning model. Cycle time of all intersections remained the same during the optimization and the actions refer to the choice of remaining in the current phase or changing to the next
	Abdoos et al. developed a two-level hierarchical control model based on Q-learning (Abdoos et al., 2014). The bottom level comprises multiple intersections from a smaller region in the network and performs Q-learning to optimize the signal timing plan individually, while the top-level implemented tile coding to reduce the size of the state from the bottom level and abstract the model to a computing degree that field implementation of the proposed multi-agent Q-learning model could be practical. A network wi
	2.3.3 Deep Q-learning
	With the advent of the deep neural network, Q-learning has been improved and deep Q-learning models could yield more promising results.
	With high-dimensional inputs available from intersections, such as camera images from surveillance cameras, simple Q-learning has difficulties representing the complex sensory inputs and actions and generalizing past experiences to new situations (Mnih, 2015). To mimic the human and animal brain learning process, a hierarchical neural network, termed deep neural network (DNN), was introduced to handle the extremely high complexity of input data and actions. Combined with Q-learning, deep Q-learning (DQN) wa
	Since the publication of DQN, its application in traffic signal control has been evaluated. Genders and Razavi developed a DQN with experience replay for optimizing the signal timing of an isolated intersection (Genders and Razavi , 2016). Due to the advantages of DNN which can handle information-dense inputs efficiently, the state represented in this research contains the discrete cell representation of the road segment. Three vectors associated with each cell,
	including vehicle presence status, the speed of each vehicle, and the current traffic signal phase, were used as the state, forming an information-dense input. Instead of only considering the queue length or average vehicle delay normally applied in the Q-learning methods, this kind of information-dense input could help the agent learn more from the complex input and generalize the experience to the new situations better, achieving a faster convergence with less computing time with similar parameter setting
	Ge et al. proposed a cooperative DQN with Q-value transfer for multi-agent-based adaptive signal control (Ge et al., 2019). Individual intersections relied on the deep Q-learning model to optimize their performance respectively. The cooperative mechanism was triggered when the centralized control system combined the latest optimal performance of each intersection and transferred the Q-value from adjacent intersections for a quicker learning process and less computing time.
	In conclusion, deep Q-learning either for a single intersection or a network with multiple intersections can improve model performance by taking into account more complex sensory data and actions at the expense of more computing time. However, both existing research for Q-learning and deep Q-learning fail to consider the network with traffic incidents and hence prevent practitioners from understanding their performance in this situation.
	2.3.4 Traffic Incident Management in Traffic Signal Control
	Traffic congestion can be classified into two categories: recurring and non-recurring. Recurring congestion is due to traffic demand pattern variations throughout the day, such as traffic demand in the peak hours that exceeds capacity. Recurring congestion tends to occur daily and allows traffic management personnel to seek solutions. Non-recurring congestion comes from special events, such as traffic incidents and activities that increase travel demand such as major sports events. Traffic incidents, for ex
	Traffic incident management (TIM) aims to detect the incident rapidly and recover the transportation infrastructure capacity as quickly as possible (Carson, 2010). Various tools and strategies are proposed to facilitate traffic incident management, including manually adjusting adjacent traffic signals to temporally increase capacity to accommodate the traffic patterns under the impact of traffic incidents. However, due to the characteristics of traffic incidents, such as random locations, times of day, and
	Logi and Ritchie proposed a knowledge-based system for non-recurring traffic congestion supporting traffic management personnel to select integrated traffic control plans, including traffic diversion and signal timing adjustment, to decrease traffic flow metering from the incident locations and increase capacity for the congested approaches (Logi and Ritchie,
	2001). This traffic congestion management tool relied on the knowledge collected from a set of predetermined incident locations by varying the inputs, such as flow saturation degree and traffic signal timing parameters, to increase the uncertainty of the environment to mimic the real-time scenario. The model provides a selection of control plans for the users as well as the reasoning logic for the target goals. However, the model did not include enough detail about how to choose the adjacent signalization i
	Wirtz et al. evaluated the impact of traffic signal adjustment from a preplanning perspective for a full road closure on I-94 (Wirtz et al., 2005). Dynamic traffic assignment-based simulation was used to compare the traffic delay in time before and after manually adjusting the traffic signal plans near the incident locations. The results show that the preplanning of the traffic incidents in terms of traffic signal control adjustment could reduce the traffic delay and recover the roadway capacity faster than
	Ban et al. developed a decision-making tool to determine if adaptive signal control is better than the existing actuated signal control system in real-world situations by using a regression model and support vector machines (Ban et al., 2016). However, this research failed to discuss the impact of traffic incidents in the comparison.
	Mao et al. proposed genetic algorithms to optimize adaptive traffic signal control under severe incident conditions (Mao et al., 2019). This research first fine-tuned the model parameters in a recurrent traffic condition and then implemented the improved model in non-recurring situations. The results concluded that the proposed genetic algorithm reduces the traffic delay by over 40%.
	2.4 Summary
	Reinforcement learning is advantageous compared to conventional signal control methods. Data that is currently available to characterize the intersection or network state can become intensive and conventional methods cannot make use of this information as efficiently as reinforcement learning which relies on the computing capability of modern machines. For example, reinforcement learning could directly use camera images as the inputs for the learning model to extract useful information and output the model
	Although many research efforts have implemented reinforcement learning models in normal traffic conditions to show its advantages over conventional signal optimization methods, the analysis of reinforcement learning-based signal control under traffic incidents has largely been ignored. This dissertation contributes to filling this gap by building a reinforcement learning model, particularly the Q-learning model in traffic signal control by considering traffic incidents in the network to improve network dela
	network traffic incidents. 2. The parameters of the DQN model used in the single intersection will be optimized. The derived model will be transferred into a network with 16 intersections (4x4) with little computing time to perform cooperative adaptive signal control to alleviate traffic impacts of traffic incidents. This would build the foundation for evaluating the deep Q-learning performance in the network settings in response to the random occurrence of traffic incidents in the network.
	
	Chapter 3.
	Chapter 3.
	Deep Reinforcement Learning Algorithm
	

	3.1 Introduction
	In this chapter, key concepts of reinforcement learning are illustrated as well as Q-learning and its variants for improvement.
	3.2 Reinforcement Learning
	Reinforcement learning is a process through which an AI agent takes sequential actions by interacting with its environment by trial and error to solve a task, which is often modeled as a Markov Decision Process (MDP). An MDP is a mathematical framework for modeling decision making in a discrete and stochastic control process (Howard, 1960).
	At each time step 𝑡, the agent observes a state s from the environment, where 𝑠∈𝑆 and 𝑆 represents all possible states in the environment. The agent takes an action a by following some predetermined rules where 𝑎∈𝐴(𝑠) and 𝐴(𝑠) represents all potential actions for the agent to perform at state s. The environment shifts to another state s^' with the impact of the performed action and sends a numerical signal, termed reward 𝑅(𝑠,𝑎,𝑠′), to the agent to inform whether the action is promising as expe
	At each time step 𝑡, the agent observes a state s from the environment, where 𝑠∈𝑆 and 𝑆 represents all possible states in the environment. The agent takes an action a by following some predetermined rules where 𝑎∈𝐴(𝑠) and 𝐴(𝑠) represents all potential actions for the agent to perform at state s. The environment shifts to another state s^' with the impact of the performed action and sends a numerical signal, termed reward 𝑅(𝑠,𝑎,𝑠′), to the agent to inform whether the action is promising as expe
	Figure 3.2-1
	Figure 3.2-1

	.

	
	Figure
	Figure 3.2-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018)
	
	State 𝑆 is a member of the set of all observations of the environment represented by the model. Take traffic signal control as an example, if the longest queue length from each approach is determined to be used to represent an isolated intersection, the possible states can be represented by an integer array with a size of 4 and each integer represents the longest queue length of each approach with only straight movement traffic demands.
	The set of actions 𝐴 defines the choices of the agent to exert on the environment. In the case of traffic signal control, the agent is the traffic signal controller. The actions the agent can perform include extending the current phase green time or shifting to the next phase from the available phases. For some cases, the agent can skip phases if conditions are satisfied, which is predetermined by the modeler.
	The Markov property states that the future is independent of the past (Markov, 1954). Therefore, the transition function 𝑃 models the transition probability of new state 𝑆′ based on the current state 𝑆 and chosen action 𝐴 as follows: 𝑃(𝑆′=𝑠′|𝑆=𝑠,𝐴=𝑎)=𝑝(𝑠′|𝑠,𝑎)
	In the case of traffic signal control, assume the current state is s and the signal controller chooses to extend the current phase. If we knew the transition function, we could get a deterministic new state. However, the transition function of a dynamic environment, such as a a transportation network, is hard to obtain and estimation is required to solve this issue.
	Reward 𝑅 is an immediate quantified signal that the agent receives from the environment as the result of taking an action, and it directly notifies the agent if the action is good or not. In the case of traffic signal control, if we choose to extend the current phase, but the current state has no traffic demand for it, this environment should send a negative reward to the agent that it is not a good choice.
	To be more specific, the agent first observes its environment and senses the inputs, termed state. The agent takes an action from its action set based on the existing information and knowledge learned from its past experiences. The environment changes to the next state from the previous one based on the action performed by the agent. The new environment will send a signal, termed reward, to the agent telling the agent whether the taken action is good or not. If the reward is good, the agent will learn it an
	One of the challenges of reinforcement learning is when the MDP cannot be fully determined in terms of the transition function. Two common learning methods are used to overcome this issue. The first one isto build a model of the MDP and find the optimal policy. The second approach is to gain knowledge through experience (a tuple of state, action, reward, and new state) and estimate the optimal policy.
	In the finite MDP, an episode denotes a process from the beginning state to the end state. In the case of traffic signal control, one round of simulation of a traffic demand with the signal control process can be called one episode. During each episode, the trajectory of the reinforcement learning process could be represented by a series of states, actions, and rewards. If the learning process is finite and the final time step is denoted by T, the whole learning trajectory could be expressed as: 𝑆1,𝐴1,𝑅1
	The goal of learning is to maximize the total rewards, termed as returns denoted by 𝐺𝑡 at time step 𝑡.
	𝐺𝑡= ∑𝑅𝑖𝑇𝑖=𝑡
	In the above equation, every reward from time 𝑡 is equally important since there is no weighting factor for each one. However, in reality, the rewards might not be the same. For example, which one will you choose, $1,000 now or $1,000 one year later? The answer is definitely obvious. You will choose to get the money as soon as possible because money tends to depreciate in the long run. The same concept was introduced to the. Discount factor, 𝛾 is used to quantify this effect and the return can be calculat
	The discount factor is a value between 0 and 1, inclusively. If it is set to 0, only the immediate reward will be considered. If it is set to 1, future rewards have the same value as the current one. Normally, the discount factor is set to be a value slightly less than 1 so we treat future rewards as less important than the immediate ones and it will eventually decay to 0 if the time steps are large enough.
	The discounted returns can also be expressed as the following by considering that the MDP is executed one time step at a time: 𝐺𝑡=𝑅𝑡+𝛾𝐺𝑡+1
	This equation reflects the relationship between two consecutive returns. Note that all the rewards, 𝑅𝑖, where 𝑖=𝑡,𝑡+1,…,𝑇, in this equation have not been observed so they are random variables. We use 𝑟𝑡 to denote the observed reward. The randomness of 𝑅𝑡 comes from two sources. First, the action can be randomly chosen if exploring the environment early in the training stage. The other one is due to the randomness of the new state from the environment.
	3.3 Q-Learning
	Since 𝑅𝑡 is a random variable with respect to the states and actions starting at time step 𝑡, the returns 𝐺𝑡 is also a random variable with respect to the states and actions. To calculate 𝐺𝑡, we need a way to estimate future rewards. Q-learning is the most common algorithm to calculate returns based on the Temporal Difference (TD) learning concept. TD learning is a combination of Monte Carlo (MC) estimation and Dynamic Programming (DP). MC estimation allows the agent to learn from its experience with
	The Q-value, known as the action-function value, 𝑄𝜋(𝑠𝑡,𝑎𝑡), is used to represent the expectation of returns 𝐺𝑡 with respect to the state and action at time 𝑡 as: 𝑄𝜋(𝑠𝑡,𝑎𝑡)=𝐸(𝐺𝑡|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡)
	Since we have 𝐺𝑡= 𝑅𝑡+𝛾𝐺𝑡+1, we can express the Q-value as follows:
	 𝑄𝜋(𝑠𝑡,𝑎𝑡)=𝐸(𝑅𝑡+𝛾𝐺𝑡+1|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡) =𝐸(𝑅𝑡|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡)+𝛾(𝐸(𝐺𝑡+1|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡)) =𝐸(𝑅𝑡+𝛾𝑄𝜋(𝑆𝑡+1,𝐴𝑡+1))
	There must exist at least one policy that leads to the maximum action-value function and we use 𝑄∗to indicate this optimal action-value function. Whatever policy is used, we cannot improve the action-value function by taking action 𝑎𝑡 at the given state 𝑠𝑡. Normally, we can remove the 𝜋 from 𝑄 to simplify the expression. 𝑄∗(𝑠𝑡,𝑎𝑡)=max𝜋𝑄𝜋(𝑠𝑡,𝑎𝑡)
	The best action leads to the maximum action-value function which can be expressed by: 𝑎∗=argmax𝑎𝑄∗(𝑠𝑡,𝑎𝑡)
	Since we do not know the expected value of rewards 𝑅𝑡 and returns from the next time step, we use the observed 𝑟𝑡 and 𝑄𝜋(𝑠𝑡+1,𝑎𝑡+1) to estimate the Q-value (Watkins, 1989). Combined with the DP concept to update the action-value function based on parts of the observations and parts of the estimations, we have the Q-learning expression (Watkins, 1989), defined by: 𝑄∗(𝑠𝑡,𝑎𝑡)=(1−𝛼)𝑄∗(𝑠𝑡,𝑎𝑡)+𝛼[𝑟𝑡+𝛾max𝑎𝑄∗(𝑆𝑡+1,𝑎)]
	Where 𝛼 is called learning rate, a hyper-parameter that is not learned from the learning process but determined by the modelers in advance. The learning rate determines how much the old Q-value should be changed based on the estimated Q-value. Q-learning trains the optimal action-value function 𝑄∗(𝑠,𝑎). In the above equation, the second part of the equation is called the TD target, which is a combination of the observed reward by executing one time step and the estimated optimal Q-value from the next ti
	TD error represents the difference between the target value and the existing value, expressed by: 𝛿𝑡=𝑄∗(𝑠𝑡,𝑎𝑡)−𝑦𝑡
	Therefore, the Q-learning update equation can be expressed by: 𝑄∗(𝑠𝑡,𝑎𝑡)=𝑄∗(𝑠𝑡,𝑎𝑡)−𝛼𝛿𝑡
	Using the TD learning method reduces the difference of the TD error through experience. Once the error cannot be reduced anymore (smaller than a threshold), the learning is considered
	to be converged and the learning process can be terminated. The Q-learning method will converge as long as each state-action pair can be visited enough times (Watkins, 1992).
	To enable the agent to explore efficiently early in the learning process, 𝜀-greedy policies are used by giving all nongreedy actions the minimal probability, 𝜀|𝐴(𝑠)|, where 𝜀 is a value between 0 and 1 and the denominator is the size of the possible actions. For greedy actions, the probability is set to 1−𝜀− 𝜀|𝐴(𝑠)| . As learning proceeds when the agent has more knowledge, the action choice will be cleverer and more efficient by lowering the probability of choosing random actions. This is normally
	3.3.1 Tabular Q-learning
	For a simple environment with a small number of state-action pairs, one can use the tabular method to solve the Q-learning problem. This method uses a table, termed Q-table, to save the Q-value of each state-action pair during the learning process. Once the algorithm converges, the final Q-table can be used to guide the agent to choose an action at any given state to achieve the maximum expected returns.
	An algorithm for solving the Q-learning problem by the tabular method is listed below:
	
	Figure
	Figure 3.3-1. Bus line simulation demonstration Algorithm: Q-learning
	
	3.3.2 Deep Neural Network and Deep Q-learning
	For a more complex environment, when the number of state-action pairs is too large to be stored with a Q-table or when it is impossible to visit each state-action pair, the optimal action-value function (𝑄∗(𝑠,𝑎)) can be approximated. Hence DQN was introduced to improve the capability of Q-learning (Mnih et al., 2015). 𝑄∗(𝑠,𝑎)≈𝑄(𝑠,𝑎;𝜃)
	Here 𝜃 represents the learning parameters in the DQN. The essence of DQN is the deep neural network (DNN). DNN is comprised of at least three layers of artificial neural network, as shown in
	Here 𝜃 represents the learning parameters in the DQN. The essence of DQN is the deep neural network (DNN). DNN is comprised of at least three layers of artificial neural network, as shown in
	Figure 3.3-2
	Figure 3.3-2

	. Activations of one layer determines activations of the next layer and the inputs proceed. Each layer detects a pattern from the previous layer. With a large number of hidden layers, the model can detect more sub patterns, compared to the model with a small number of hidden layers. If the number of hidden layers is less than what is required to extract important features from the inputs, the model might under fit the data. Otherwise, overfitting could occur. The number of hidden layers tends to correspond

	
	Figure
	
	Figure 3.3-2. Deep neural network with three hidden layers (
	Figure 3.3-2. Deep neural network with three hidden layers (
	https://www.ibm.com/cloud/learn/neural-networks
	https://www.ibm.com/cloud/learn/neural-networks

)

	 Each neural network includes a certain number of nodes and each node is called an artificial neuron. Each neuron takes the outputs from the previous layer and outputs a number between 0 and 1 by normalization to reduce the computing time. For example, the first layer of the DQN is the input layer and the value of each node is only dependent on the inputs. Each node in the hidden layers is initialized with an arbitrary weight, as a connection between the nodes in adjacent layers, but cannot be the same for
	in the DNN. The concept of “learning” is a process of updating weights associated with each node in the hidden layers to minimize the cost function, also known as the loss function, so that the learning model can accurately predict and maximize returns from the inputs. The number of nodes in each hidden layer is a hyper-parameter that must be fine-tuned as is the number of hidden layers in the DNN.
	As mentioned before, the parameters in the DNN are randomly selected by initialization. How does the model learn from the inputs? No matter what models of machine learning one uses, one must have a predicted value and a target value. In deep Q-learning, the target value is based on observation of one time-step reward and the estimated optimal Q-value from the next state. The predicted value is the current Q-value updated by the Q-learning update equation. The difference between the predicted value and targe
	The process of solving Q-learning with the DQN approximation has the following steps:
	
	Figure
	Figure 3.3-3. Algorithm: Q-learning with DQN
	
	3.4 Deep Q-learning Variations
	Although deep Q-learning has achieved promising results for many applications, it may be unable to converge when implementing a neural network (McClelland et al., 1995). Two main reasons can lead to this issue.
	First, we use a transition, (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1), in the deep Q-learning mentioned earlier to train the model. Successive transitions can be correlated with each other and hence make the model update highly correlated. Second, every time one transition is used to update the model, it will be discarded and will never be used again. Experiments have shown that using consecutive transitions without any improvement to train the DQN can result in inefficient training regardless of training time. Therefore, e
	3.4.1 Experience Replay
	The purpose of implementing experience replay is to reduce the impact of correlated transitions for the training process. To implement experience replay, a data structure which is a list of tuples (past transitions), termed a replay buffer, is used. The size of the replay buffer, 𝑁, is a hyper-parameter that must be tuned and cannot be trained by the learning model.
	The replay buffer stores 𝑁 past transitions, a tuple of (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1) called experience 𝑒𝑡. The model will not begin the training until the replay buffer is filled with past experiences with the size 𝑁. A minibatch (certain number of experiences), termed batch size, will be randomly and uniformly selected from the replay buffer to train the model. The chosen experiences are equally important in terms of improving the model. To maintain the size of the replay buffer, the oldest experiences are
	3.4.2 Target network
	Another known limitation of the DQN is overestimating the Q-value (Van Hasselt et al., 2016). Recall the TD target in DQN is defined by: 𝑦𝑡=𝑟𝑡+𝛾max𝑎𝑄(𝑠𝑡+1,𝑎;𝜃)
	The TD target is partly based on the observation 𝑟𝑡 and partly on the estimate of DQN for the state at the next time step. Since we always choose an action to maximize the Q-value, the model will overestimate the TD target and hence overestimate the Q-value overall. To solve this issue, the concept of the target network was proposed (Mnih et al., 2015). Instead of using the DQN parametrized by 𝜃, to calculate the TD target, the target network uses another DQN with parameter 𝜃−, which will be fixed in a
	Gradient descent is the common method to reduce the loss function by following the direction of the derivative of the loss function with respect to 𝜃𝑡: 𝜕𝐿𝑡(𝜃𝑡)𝜕𝜃𝑡=−𝐸[(𝑟𝑡+𝛾max𝑎𝑄(𝑠𝑡+1,𝑎;𝜃𝑡−))𝜕𝑄(𝑠𝑡,𝑎𝑡;𝜃𝑡)𝜕𝜃𝑡]
	With the combination of experience replay as mentioned earlier, random samples from the replay buffer will be extracted to update the DQN parameter, termed stochastic gradient descent to break the correlation of successive experiences.
	3.5 Summary
	The DQN with experience replay and target network was introduced by Minh (2015) and will be adopted to train the traffic signal controller for the single intersection scenario in this research.
	The pseudocode of the algorithm used in this dissertation is listed below:
	
	Figure
	Figure 3.5-1. Algorithm: Deep Q-learning with Experience Replay and Target Network
	
	Chapter 4.
	Chapter 4.
	Simulation Preparation
	

	4.1 Overview
	Simulation is a primary method by which municipal traffic engineers establish confidence in innovative traffic signal timing concepts. This confidence is ordinarily established by characterizing the field network, collecting traffic demand data and testing potential signal retiming policies to analyze network performance (e.g., average vehicle delay). In recent years, as the development of reinforcement learning methods has evolved, a goal-oriented machine learning process can be applied decreasing analysis
	The core concept of reinforcement learning algorithms is to explore the relationship between the agent’s actions and its evolving environment by trial-and-error methods. Feedback from the environment measured by so-called rewards can help the agent adjust its behavior so as to achieve more rewards in the future.
	The next generation traffic signal control system is far from the field application since many aspects, including traffic incidents, have not been tested thoroughly. One major reason is that collecting field network data associated with traffic incidents and validating the proposed models are expensive and time-consuming. For example, collecting historical traffic incident characterizations and emergency vehicle response data are rarely feasible for most researchers, who might want to focus more on the deve
	The agent can learn from interaction with the environment regarding impacts of traffic incidents in the network. However, a large amount of experience is required to enable the agent to optimally respond to all possible incident situations so implementation of an AI traffic signal without sufficient experience would be disastrous. An implemented AI traffic signal should perform at least better than existing signal timing plans with/without traffic incidents.
	A more inexpensive and practically feasible traffic simulation tool with traffic incident/response and AI signal control module would be helpful in promoting a smarter more robust traffic signal control system. Therefore, we provide a Python extension based on SUMO to allow micro-simulation of an AI signal control system in a network experiencing incidents randomized in both time and space.
	We begin by highlighting some existing efforts in developing the next generation traffic signal control systems and available simulation software with traffic incident/response capabilities. This is followed by the extraordinary features of SUMO and the framework we used to extend SUMO with a traffic incident/response module coded in Python. Experiments are presented to show the use of the extended module.
	4.2 Literature Review
	Traffic signal retiming plays a significant role in improving the network performance when traffic incidents occur. Due to the complicated inputs and short period of time for making decisions, traffic simulations have been commonly adopted to test potential traffic signal
	retiming policies before field implementation. Liu and Hall proposed a Windows operating system-based computer simulation software for simulating highway traffic incidents as well as emergency vehicle dispatching (Liu and Hall, 2000). Traffic delay is the only factor considered in the model and queue spill back effect is not simulated. It could help researchers and practitioners to broadly understand the impact of traffic incidents and determine the emergency dispatch strategies as needed. However, there ar
	Kaan and Bartin developed a complete traffic incident simulation tool in Siman language to generate incidents in the network and to send emergency vehicles to respond accordingly (Kaan and Bartin, 2003). Real network and real-world data were collected to test their proposed simulation tool. This work allows users to implement different TIM strategies to reduce the impact of traffic incidents in the network. However, the programming language Siman is rarely used in the data scientist and machine learning mod
	Ozbay et al. proposed Rutgers Incident Management System (RIMS) to simulate traffic incidents and to test various incident response strategies based on the cell transmission model developed by Daganzo (Ozbay et al., 2009). The results indicate that computer simulation methods could significantly reduce the traffic delay triggered by a traffic incident in the network. However, this tool lacks traffic signal timing, limiting the usage of it.
	Huang and Pan proposed to use a GIS engine to facilitate traffic incident and incident response optimization management. The idea was tested with real cases and commercial traffic simulation software (Huang and Pan, 2007).
	Wirtz et al. proposed a simulation-based method to test traffic incident management strategies in Visual Interactive System for Transport Algorithms (VISTA), a dynamic traffic assignment (DTA) embedded tool (Wirtz et al., 2005). The DTA offers the opportunity for modelers to accurately estimate the impact of the traffic incidents by considering the dynamic change of road capacity and link travel time, where the static traffic assignment models fail to perform. Network and traffic demand were extracted from
	Reinforcement learning methods have been adopted in the field of traffic signal retiming. The main advantage of the reinforcement learning methods is to allow use of deep neural networks to perform approximation of inputs from the environment and estimate cumulative long-term expected rewards with a model-free method. To achieve the accuracy of high-level function approximation, large amounts of data need to be prepared.
	Common limitations of existing traffic incident simulation tools are:
	• The tools have not been maintained and published so that other users find it hard to replicate the experiments or design new experiments to test traffic signal control strategies. A free and open-source simulation software is needed.
	• The tools have not been maintained and published so that other users find it hard to replicate the experiments or design new experiments to test traffic signal control strategies. A free and open-source simulation software is needed.
	• The tools have not been maintained and published so that other users find it hard to replicate the experiments or design new experiments to test traffic signal control strategies. A free and open-source simulation software is needed.

	• The existing tools are not able to generate a test network and associated traffic demand so as to minimize the costs of preparing the base scenario. Most existing experiments use a single or multiple real data points to simulate the traffic incident environment. This scale of inputs is not enough to train the machine learning models.
	• The existing tools are not able to generate a test network and associated traffic demand so as to minimize the costs of preparing the base scenario. Most existing experiments use a single or multiple real data points to simulate the traffic incident environment. This scale of inputs is not enough to train the machine learning models.

	• The functions in the existing tools are not comprehensive enough to test proposed strategies from different angles, including vehicle rerouting and traffic signal retiming.
	• The functions in the existing tools are not comprehensive enough to test proposed strategies from different angles, including vehicle rerouting and traffic signal retiming.

	• The existing tools are not available for multi-cross platforms, preventing the use of high-performance computing advantages these days.
	• The existing tools are not available for multi-cross platforms, preventing the use of high-performance computing advantages these days.

	• The simulation environment is closed, meaning it is hard for the users to customize and extend.
	• The simulation environment is closed, meaning it is hard for the users to customize and extend.

	• Measurement of Effectivenesses (MOEs) are limited and do not catch up with the network performance measurement nowadays when vehicle emission and fuel consumptions are required to be considered.
	• Measurement of Effectivenesses (MOEs) are limited and do not catch up with the network performance measurement nowadays when vehicle emission and fuel consumptions are required to be considered.

	• Manually generating test networks, traffic demand, and incident occurrence is not efficient for training machine learning algorithms for traffic signal retiming.
	• Manually generating test networks, traffic demand, and incident occurrence is not efficient for training machine learning algorithms for traffic signal retiming.

	There is a need for a simulation testbed that incorporates the traffic signal retiming and traffic incidents/response system to develop a more robust AI traffic signal control system. The purpose of this work is to provide a highly automated process to generate random traffic incidents in the given network as well as the corresponding emergency service vehicles as an extension based on the existing popular microscopic traffic simulation software SUMO. Key components in the extension include random traffic i
	4.3 Simulation Platform
	SUMO simulation requires at least two files, including a network file and a route file. The network file defines the road network, including intersections, edges, and connection rules. The traffic signals can be also included in the network file. There are several common types of traffic signals provided in SUMO, including pretimed, actuated, adaptive, and other more
	advanced (self-organized traffic signals) control frameworks. Detectors are also provided with the user's definition, including loop, area detector, etc. Users can also customize the traffic control algorithms as needed, including the reinforcement learning traffic signal control methods.
	4.3.1 Network
	Another benefit of using SUMO is that it provides a network generation library (NETGENERATE) so that users can easily build a grid-like network. This library allows users to determine the number of intersections in horizontal and vertical directions in the network. Users can also choose the number of lanes and length of each approach for each intersection.
	Pretimed traffic signals can also be added to the target intersections in the network. The tool provides a way to set up the cycle length, left turn protection phases, green split, yellow time, and all red time durations to mimic the practical applications as needed.
	4.3.2 Traffic Demand
	SUMO provides another important and useful Python script to prepare traffic demand randomly based on the developed network if users cannot get access to any trip information of the network. It is convenient to the users who focus on evaluating a more generalized traffic signal control algorithm so they do not have to spend time collecting field data. The tool allows users to set the ratio of internal and external traffic demand as needed. In this study, we assume that all traffic demand is external traffic
	Another commonly used way in SUMO to generate the traffic demand is to dynamically add vehicles to the system. The problem with this method is that the generated traffic will calculate the shortest path in the network dynamically so it might be able to detour around the incident location and hence decrease the traffic impact.
	In order to isolate the impact of traffic signal retiming provided by the AI traffic signal agent, we need to lock the traffic routes so that when there is a traffic incident in the system, the traffic would not shift routes. This is not the case in reality where travelers would shift routes to avoid being stuck in a long queue in the network. However, we assume that no travelers would change routes for two reasons. First, the benefits of optimizing the signal plan based on the AI traffic signal agent need
	The same thing should not happen to the traffic demand generated later after the incident time. Therefore, this paper decided to use the first method mentioned above and edit the original traffic demand file (XML format) to add traffic incidents, including incident locations, incident durations, and emergency vehicle response.
	4.3.3 Incident Generation
	SUMO provides three methods to simulate traffic incidents in the network: 1. Stop a car at a designated location for a specific period; 2. Reduce the road capacity of associated edges; 3. Reduce the design speed of the associated road edges. The easiest and more realistic manner is the first one since it will require the route file to be edited with one line of code to reflect the stop of an incident vehicle.
	SUMO provides three methods to simulate traffic incidents in the network: 1. Stop a car at a designated location for a specific period; 2. Reduce the road capacity of associated edges; 3. Reduce the design speed of the associated road edges. The easiest and more realistic manner is the first one since it will require the route file to be edited with one line of code to reflect the stop of an incident vehicle.
	Figure 4.3-1
	Figure 4.3-1

	 shows the added traffic incident information in the route file. In this example, the vehicle with ID 2 will stop at Lane “C2C1_1” 20 meters from the end of this lane for 1500 seconds.

	
	Figure
	Figure 4.3-1. Settings of Stopping Vehicle in Route File
	4.3.4 Emergency Service Vehicles Simulation in Sumo
	In addition to the incident vehicle generation, we also provide a way to generate emergency service vehicles in the simulation once the traffic incident is detected.
	During normal traffic movement, no vehicle will stop at a location for a long period of time, a user-defined time threshold (e.g., 5 minutes). Once the system has detected that a vehicle is stuck in the network for more than a specific period of time, the emergency service vehicles will be generated and dispatched. Users can choose the number of emergency service vehicles to reflect the reality process, such as multiple police cars and EMS vehicles.
	We can generate multiple individual vehicles to mimic the police and EMS vehicles, but the problem of this is some of the vehicles might not be able to reach the incident location due to associated traffic congestion. To overcome this issue, we decided to edit the emergency vehicle length to mimic multiple emergency service vehicles being needed.
	The default length of per emergency service vehicle is 7.5 meters, including 5 meters for the vehicle length and 2.5 meters for the clear space. For example, if 3 police cars and 1 EMS vehicle are required to deal with a traffic incident, that is a total of 4 emergency service vehicles, a vehicle with length of 30 meters, will be generated and dispatched in the simulation and hence it will block 30 meters of the incident lane to reflect the combination impact of multiple emergency services vehicles in prac
	In SUMO, there are several important concepts of network components. Edge defines the approach of the intersection. Edge includes a certain number of lanes. The lanes are named based on the edgeID and lane index.
	The route of the emergency service vehicle is defined before dispatching it into the network. To generalize the implementation of emergency vehicle response, we randomly select an origin for its route from the fringe of the network. The destination of the route is the incident
	edge. During the incident response service, the emergency vehicle will occupy the lane next to the incident vehicle. For example, if the incident vehicle stops at the middle lane of an edge and there are 3 lanes for this edge, the emergency service vehicle will randomly stop in either the first (straight and right turn lane) or the third lane (left turn lane in our experiment) of the same edge.
	The emergency vehicle will arrive at the incident location after the incident vehicle has been detected and the travel time from its origin to the incident location. And then the emergency service vehicle will stop for the same duration as the incident vehicle stops. Once the emergency service vehicle completes its service it will finish its route and reach the intersection of the destination edge.
	In Traci, the function to generate a route based on the origin and destination edges is traci.simulation.findRoute(origin_edge, destination_edge). Once the two parameters are given, the function will find a feasible and probably the shortest route in the network. The route information could be called to show the edges used in this route by calling the route.edges property.
	To dispatch the emergency service vehicle in the system, the function traci.route.add(routeID, route_edges) needs to be called to add the edges of the emergency service vehicle route into the route file. The emergency service vehicle then can be added to the route file by calling traci.vehicle.setStop(vehicle_id, route_edges, stop_lane_index, stop_duration). Users can customize the traffic signal to allow emergency service vehicle priority so that it can arrive at the incident location as quickly as possibl
	For a two-lane edge, the whole edge will be blocked by both the incident car and emergency service vehicle, while for a three or more-lane edge, two lanes will be blocked and its capacity will be reduced significantly. We examined the impact of only considering the incident vehicle without the emergency service vehicle in the system and the delay impact is significantly different, showing that having the emergency service vehicle in the system should be more realistic. The pseudo code for the simulation is
	For a two-lane edge, the whole edge will be blocked by both the incident car and emergency service vehicle, while for a three or more-lane edge, two lanes will be blocked and its capacity will be reduced significantly. We examined the impact of only considering the incident vehicle without the emergency service vehicle in the system and the delay impact is significantly different, showing that having the emergency service vehicle in the system should be more realistic. The pseudo code for the simulation is
	Figure 4.3-2
	Figure 4.3-2

	.

	
	Figure
	Figure 4.3-2. Pseudocode for the Simulation Framework
	4.4 Simulation Procedure
	Once the network and traffic demand are prepared, the customized incident Python script will read the route XML and randomly select a vehicle to generate a traffic incident. Then the simulation starts and once the incident vehicle is detected in the network stopping for more than 5 minutes (a user defined threshold), emergency service vehicles will be generated by calling DISPATCH_EMERGENCY_VEHICLE() function. The default color of the emergency vehicle is set to be blue and the length of it is determined by
	The developed incident generation and emergency service vehicle response Python script is published in the following
	The developed incident generation and emergency service vehicle response Python script is published in the following
	GitHub repository
	GitHub repository

	. The Networks directory includes a 4x4 grid network generated by calling the NETGENERATE command aforementioned, as shown in
	Figure 4.4-1
	Figure 4.4-1

	. The main functions of incident generating and emergency service vehicle response are in incidentRoute.py located in the root directory of this GitHub repository.

	
	Figure
	Figure 4.4-1. 4x4 Grid Network with Traffic Incident
	
	Figure
	Figure 4.4-2. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles
	In
	In
	Figure 4.4-1
	Figure 4.4-1

	, the 4x4 grid network is shown as well as the incident vehicle and emergency service vehicle.
	Figure 4.4-2
	Figure 4.4-2

	 shows a larger view of the incident vehicle (RED) and emergency service vehicle (BLUE).

	The current Python script is for single traffic incident preparation. Users could extend it to include multiple incidents as needed.
	4.5 Implementation
	A 4x4 grid network can be created by running the NETGENERATE module provided by SUMO to generate a grid-like network with user settings. All the parameters as well as their meaning can be found in Appendix 1.
	Traffic demand associated with the 4x4 grid network can be prepared by running the trip generating Python script in SUMO. Some of the key parameters that users can define include the ratio of internal and external trips, hourly traffic flow, and turning ratios. The commands used in this paper can be found in Appendix 2 as well as the explanation of the parameters.
	Traffic demands are all external traffic, meaning the origins and destinations of all trips are at the network fringe.
	Intersections are all controlled by pretimed traffic signals with 4 phases, including east-west straight movement phase, east-west left turn phase, north-south straight movement phase, and north-south left turn movement phase. Right turn movement is allowed and included in the straight movement phases. Cycle time for every intersection is the same, 90 seconds. The cycle is split 50%-50% between the east-west and north-south directions with the straight/right movement receiving 27 seconds and the left turn p
	To add random incidents in the created network, the python script must be called. Several inputs need to be defined before calling the extension, Including the network XML file provided by the NETEDIT function, the traffic demand XML file produced by calling the randomTrip.py tool provided by SUMO, and the corresponding SUMO configuration file.
	The traffic incident will be generated before the simulation starts by randomly selecting a vehicle from the first one third of the simulation period. The vehicle must have a route crossing the center of the network so that the stopped lane is not located in the fringe of the network to prevent vehicles from entering the network. The traffic incident will last for a random period of time from 15 minutes to 30 minutes with a 5-minute increment. Once the vehicle reaches the incident location, it will fully st
	The traffic simulation system will record all vehicles' stop duration in the network. Once it detects one vehicle stopped for more than 5 minutes (a tunable parameter) in the same location, it assumes a traffic incident exists.
	A number of emergency medical service and police cars will be generated as a single long length vehicle to abstract their impact. The origin of this emergency vehicle will be a random location along the network fringe and its destination is the incident location. The emergency vehicle will be stopped for the same amount of time as the incident vehicle . For a two-lane edge, the incident vehicle and emergency vehicle will fully block the road.
	The extension could be customized easily if multiple incidents are required for any scenario.
	4.6 Summary
	This work provides a convenient Python script for SUMO extension. Rather than only considering the traffic incident impact in the network, this research also provides a way to simulate the emergency service vehicle impact in the network. As shown in the experiment results, the combination impact of traffic incidents and corresponding emergency service vehicle response could cause significantly more delays than only considering the traffic incident itself in the network. This tool will help researchers to pr
	
	
	
	
	
	
	
	
	
	
	

	Chapter 5.
	Chapter 5.
	Single Intersection Deep Reinforcement Learning Traffic
	Signal Control
	

	5.1 Overview
	This chapter employs the proposed deep reinforcement learning signal control algorithm to a single intersection simulation scenario, highlighting the potential advantages of using deep Q-learning for the traffic signal controller problem. Additionally, to assess the performance of the proposed algorithm, we compare it against three traditional non-learning traffic signal control algorithms, including Max-pressure, Webster's, and Uniform. To evaluate the effectiveness of the traffic signal controllers, we ut
	The subsequent sections of this chapter are structured as follows. The second section provides an introduction to the deep Q-learning algorithm, which is utilized along with three traditional non-learning traffic signal controllers. The simulation platform settings and code preparation are then detailed. In the Results section, a comprehensive analysis is conducted to compare the performance of the learning and non-learning traffic signal control algorithms. The final section provides a discussion and concl
	5.2 Deep Q-Learning Model
	As Chapter 3 explains, Q-learning is a type of reinforcement learning that does not rely on a pre-existing model and allows for learning the value of actions in a given state. In certain situations, a Q-table can be used to explore all possible state and action combinations, allowing the agent to develop a coherent policy that maximizes cumulative rewards once the model has reached convergence. However, for traffic signal control problems, where the number of states and action pairs is exceptionally large,
	To provide an example, let's consider a single intersection where the number of states and action pairs is dependent on factors such as the number of vehicles in each lane, the number of lanes per approach, the capacity of each lane, and the signal phasing patterns. When dealing with multiple intersections, it is preferable to have an optimized system solution. Instead of obtaining actual rewards for each state-action pair, we can use a deep neural network (DNN) to estimate the performance of an action in a
	The key components of reinforcement learning are:
	• Agent: The entity that interacts with the environment and learns to take actions based on the observed states to maximize the reward.
	• Agent: The entity that interacts with the environment and learns to take actions based on the observed states to maximize the reward.
	• Agent: The entity that interacts with the environment and learns to take actions based on the observed states to maximize the reward.

	• Environment: The external world in which the agent interacts and receives feedback in the form of rewards.
	• Environment: The external world in which the agent interacts and receives feedback in the form of rewards.

	• State: The current configuration of the environment that the agent observes.
	• State: The current configuration of the environment that the agent observes.

	• Action: The decision made by the agent to transition from one state to another.
	• Action: The decision made by the agent to transition from one state to another.
	• Action: The decision made by the agent to transition from one state to another.

	• Reward: The feedback signal that the agent receives from the environment after taking an action. The reward represents the immediate benefit or cost of the action taken by the agent.
	• Reward: The feedback signal that the agent receives from the environment after taking an action. The reward represents the immediate benefit or cost of the action taken by the agent.

	• Policy: The strategy that the agent uses to determine its actions based on the current state of the environment.
	• Policy: The strategy that the agent uses to determine its actions based on the current state of the environment.

	5.2.1 Agent
	In machine learning, an agent is an entity that interacts with an environment to achieve a specific goal. The agent can receive observations or data from the environment, take actions based on that information, and receive feedback or rewards that indicate how well it is achieving its goal. The agent's objective is typically to learn a policy, which is a mapping from observations to actions, that maximizes its long-term cumulative reward in the environment. Agents can be implemented using a variety of techn
	The traffic signal controller is represented as the agent in DQN, which aims to achieve the maximum cumulative reward by interacting with the intersection and traffic demand through its learned policy.
	5.2.2 Environment
	The environment comprises everything except the agent, such as the geometry of the intersection, vehicle arrival rate, queue lengths, delay, and other factors that are beyond the agent's control. In our case, the intersection and its characteristics serve as the environment that the agent interacts with during the learning process.
	5.2.3 State
	The inputs in DQN are represented by the state, denoted as 𝑠𝑡, which belongs to the state space 𝑆 and 𝑡∈𝑇, where 𝑇 represent the time period for the learning process. 𝑇 is fixed in our experiment for the single, isolated intersection, meaning our learning process is a finite Markov decision process.
	A suitable state must capture the essential features of the environment. In DQN, the state should include essential information from the intersection that the traffic signal controller can learn to improve its policy. Common measures used for state representation in traffic signal control include queue length, queue density, delay, vehicle waiting time, and their variations and combinations. Some more advanced states can be represented by the image of the intersection with vehicle positions which allows the
	By considering the complexity and ease of implementation of algorithms in practice, we choose normalized density of each lane (both incoming and outgoing), normalized queue length
	of each lane (for both incoming and outgoing), and the most recent green phase as the state. The reason for normalizing the density and queue is to constrain the value to the range between 0 to 1. The normalized values for the inputs of machine learning models will generally decrease the training time to get the model converged (Goodfellow et. al, 2018).
	Normalized density, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙∈𝐿, is defined by the ratio between total vehicles and lane capacity, where 𝑙 denotes the lane and 𝐿 represents a set of all incoming and outgoting lanes associated with the intersection. Normalized queue, 𝑞𝑢𝑒𝑢𝑒𝑙∈𝐿, is calculated as the ratio between the number of stopped vehicles and lane capacity. One-hot encoding of the most recent green phase is applied, plus the all red phases.
	To summarize, the state in our single intersection case can be defined as below:
	𝑠𝑡=[𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙1,…,𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑛,𝑞𝑢𝑒𝑢𝑒𝑙1,…,𝑞𝑢𝑒𝑢𝑒𝑙𝑛,𝑝ℎ𝑎𝑠𝑒1,…,𝑝ℎ𝑎𝑠𝑒𝑚]
	Where 𝑛 denotes the number of incoming and outgoing lanes and 𝑚 represents the total number of green phases and one all red phase, subject to 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙∈[0,1], 𝑞𝑢𝑒𝑢𝑒𝑙∈[0,1], 𝑝ℎ𝑎𝑠𝑒𝑖=[0,1], and ∑𝑝ℎ𝑎𝑠𝑒𝑖=1𝑚.
	5.2.4 Action
	Action is defined as the choices that the agent can make and hence it is the phases that can be selected in our single intersection scenario. Action is represented by 𝑎𝑡∈𝐴, where 𝑎𝑡 denotes the action being chosen at time 𝑡 and action space 𝐴 is a set of all selectable phases (green phases and the all red phase). We have four green phases in our single intersection scenario, including East-West straight movement green phase with unprotected left-turn green (𝑝ℎ𝑎𝑠𝑒𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡−𝐸𝑊), North-South
	Since we randomly generate demand for the experiment including random ODs, we include two protected left-turn phases into the action space. For regular cyclic traffic signal controllers, the pattern will be fixed so left-turn green phases will be applied, while for the DQN and Max-pressure controllers, left-turn phases might be less used due to the traffic pattern.
	In the DQN mode, each chosen phase will be up for at least 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If the next chosen phase is the same, it extends the current phase by adding another 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If a different phase is selected, the corresponding amber phase will be chosen and hence all red time thereafter, where 𝑡𝑦𝑒𝑙𝑙𝑜𝑤=3 seconds and 𝑡𝑟𝑒𝑑=2 seconds are fixed.
	5.2.5 Reward
	Reward at time 𝑡, 𝑟𝑡, serves as a numeric signal to train the DQN so the agent can quantify its action given a state and improve its performance by choosing the right action for maximizing long-term value measured by the reward.
	As summarized in Chapter 2, commonly used reward representations include total delay and its variation, total stops, total queue length and its variation, and some combinations of those measurements. A number of research efforts have chosen total delay or its variation as the reward based on the assumption that ultimately, the system level performance will be measured by the total delay, so using the same measurements as the reward will directly guide the agent to improve its performance.
	However, total delay requires knowing each driver’s desired speed and their actual speed through the network so that the difference could represent total delay. Taking into account this obstacle when implementing the DQN algorithm, we use a queue related reward in our model. There are multiple forms of using queue length as the reward representation, and we use the quadratic form of queue difference between each incoming lane and outgoing lane, as shown below: 𝑟𝑡=∑𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡−1,𝑖𝑛𝑐𝑜𝑚𝑖
	𝑇ℎ𝑒 𝑡𝑒𝑟𝑚 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖 denotes the number of vehicles stopping in 𝑖𝑡ℎ incoming lane. The quadratic form is used to penalize the long queues to avoid having unfair phase selection for those vehicles from the minor demand approaches. We also use the previous sum of squared queue length minus the current one so if an action reduces the value, the reward is positive and vice versa.
	The goal of the agent is to maximize the cumulative rewards, defined by the following formula: 𝑅=𝑚𝑎𝑥∑𝑟𝑖𝑇𝑡=0
	5.2.6 Policy
	A policy is a function that maps the current state of an agent to an action to be taken by that agent. The policy defines the agent's behavior and determines what actions the agent should take in response to the environment.
	There are two main types of policies in reinforcement learning: deterministic policies and stochastic policies. A deterministic policy maps each state to a single action. For example, a deterministic policy might always output "move forward" when the agent is in a certain state. A stochastic policy, on the other hand, maps each state to a probability distribution over actions. For example, a stochastic policy might output a probability of 0.7 for "move forward" and a probability of 0.3 for "turn left" when
	The goal of reinforcement learning is to learn an optimal policy that maximizes the agent's long-term reward. This is typically done by using a trial-and-error approach, where the agent explores the environment and updates its policy based on the observed rewards. In our
	case, the policy represents the weights, 𝜃, of the DNN which will help to choose an action based on a given state to maximize the cumulative rewards. Once the learning process is done, we can use the value saved in 𝜃 to approximately calculate the best actions we should choose given a state. For every step, if we follow this guidance, we will maximize cumulative rewards and hence find the best policy to choose a phase given a state.
	5.2.7 DNN Structure
	A deep neural network (DNN) is a type of artificial neural network (ANN) that is designed to model complex relationships between inputs and outputs by using multiple layers of processing nodes, or neurons, to learn hierarchical representations of the data. DNNs are composed of layers of interconnected nodes, with each node in a layer receiving input from the previous layer and outputting to the next layer. The nodes use nonlinear activation functions to transform their inputs and create a nonlinear relation
	DNNs consist of multiple layers of interconnected neurons that perform increasingly complex transformations on the input data. Common layers in DNNs include:
	• Input Layer: The input layer receives input data and passes it to the next layer in the network. It typically does not perform any computation on the input. In our case, this is defined by the inputs collected from the intersection and can be used by the controller to learn.
	• Input Layer: The input layer receives input data and passes it to the next layer in the network. It typically does not perform any computation on the input. In our case, this is defined by the inputs collected from the intersection and can be used by the controller to learn.
	• Input Layer: The input layer receives input data and passes it to the next layer in the network. It typically does not perform any computation on the input. In our case, this is defined by the inputs collected from the intersection and can be used by the controller to learn.

	• Hidden Layers: Hidden layers process the input data and perform non-linear transformations to extract features and learn patterns in the data. The number of hidden layers and the number of neurons in each layer can vary depending on the complexity of the problem being solved. This will help the controller to analyze the inputs collected from the intersection for various patterns to facilitate the learning process.
	• Hidden Layers: Hidden layers process the input data and perform non-linear transformations to extract features and learn patterns in the data. The number of hidden layers and the number of neurons in each layer can vary depending on the complexity of the problem being solved. This will help the controller to analyze the inputs collected from the intersection for various patterns to facilitate the learning process.

	• Output Layer: The output layer produces the final output of the network. The number of neurons in the output layer depends on the task being performed. For example, in a binary classification task, the output layer would have a single neuron, whereas in a multi-class classification task, the output layer would have multiple neurons. This will form a list of phases with its estimated value from the model to determine which phase has the maximum cumulative rewards to be chosen for the next phase if exploita
	• Output Layer: The output layer produces the final output of the network. The number of neurons in the output layer depends on the task being performed. For example, in a binary classification task, the output layer would have a single neuron, whereas in a multi-class classification task, the output layer would have multiple neurons. This will form a list of phases with its estimated value from the model to determine which phase has the maximum cumulative rewards to be chosen for the next phase if exploita

	A deep neural network represents a neural network structure with one input layer, one output layer, and multiple middle layers, called hidden layers. The size of the input layer is the same as the size of the state. The size of the output layer is equal to the number of actions in the
	action space, which is 4, the number of green phases in our model. The size of the hidden layers is determined by the number of layers and number of nodes for each layer. The number of nodes for each layer is fixed to be 64. The number of layers is a hyperparameter which will be tuned.
	Every layer is fully connected, meaning each node will be passed as an input for the next layer. Each connection between two nodes is represented by a single value in our DNN parameter, 𝜃. Each node can be seen as a multiple regression model that includes all the node values from the previous layer and is weighted by the parameters in 𝜃 corresponding to this layer. The weighted sum will be reculated by the chosen activation function.
	The activation function is a mathematical function that introduces non-linearity to the output of a neuron. It determines the output of a neuron based on the weighted sum of its inputs. Some common activation functions used in ANNs include:
	• Sigmoid function: The sigmoid function maps any input value to a value between 0 and 1, making it useful for binary classification problems. However, it suffers from the vanishing gradient problem, which can make training deep networks difficult.
	• Sigmoid function: The sigmoid function maps any input value to a value between 0 and 1, making it useful for binary classification problems. However, it suffers from the vanishing gradient problem, which can make training deep networks difficult.
	• Sigmoid function: The sigmoid function maps any input value to a value between 0 and 1, making it useful for binary classification problems. However, it suffers from the vanishing gradient problem, which can make training deep networks difficult.

	• ReLU function: The rectified linear unit (ReLU) function outputs the input directly if it is positive, and outputs 0 if the input is negative. ReLU has become a popular choice in deep learning due to its simplicity and ability to avoid the vanishing gradient problem.
	• ReLU function: The rectified linear unit (ReLU) function outputs the input directly if it is positive, and outputs 0 if the input is negative. ReLU has become a popular choice in deep learning due to its simplicity and ability to avoid the vanishing gradient problem.

	• Tanh function: The hyperbolic tangent (tanh) function maps input values to a range between -1 and 1, making it useful for regression problems. It is similar to the sigmoid function but has a steeper gradient, which can improve the convergence of the training process.
	• Tanh function: The hyperbolic tangent (tanh) function maps input values to a range between -1 and 1, making it useful for regression problems. It is similar to the sigmoid function but has a steeper gradient, which can improve the convergence of the training process.

	• Softmax function: The softmax function is commonly used in the output layer of a neural network to produce probabilities for each class in a multi-class classification problem. It ensures that the output probabilities sum to 1.0.
	• Softmax function: The softmax function is commonly used in the output layer of a neural network to produce probabilities for each class in a multi-class classification problem. It ensures that the output probabilities sum to 1.0.

	In our case, ReLU function is applied to be the activation function for each hidden layer.
	Q-learning is a well-known reinforcement learning algorithm that is used to find an optimal policy for an agent in an environment by learning the action-value function. However, traditional Q-learning can face limitations when dealing with high-dimensional state and action spaces.
	DNNs, on the other hand, are very good at approximating complex non-linear functions, making them a powerful tool for function approximation in reinforcement learning problems with high-dimensional state and action spaces.
	By combining Q-learning with DNNs, we can approximate the action-value function with a deep neural network, a technique known as the deep Q-network (DQN). The DQN algorithm can learn directly from raw high-dimensional sensory inputs, such as images, without requiring a
	manual feature extraction step. This can greatly simplify the design process, and enable the agent to automatically learn and extract relevant features from the environment.
	Overall, DQN, combining Q-learning with DNNs, can lead to better performance and more efficient learning in complex reinforcement learning tasks with high-dimensional state and action spaces.
	5.3 Variations of DQN
	One of the limitations of DQN is its susceptibility to overestimation of Q-values, especially in the presence of noisy data. This can occur when the DNN overgeneralizes from the limited training data, resulting in overestimation of Q-values for some state-action pairs. Another limitation is the tendency of DQN to overfocus on specific state-action pairs, leading to suboptimal policies. This can be addressed using various modifications to the basic DQN algorithm, such as experience replay, double DQN, duelin
	5.3.1 Experience Replay
	Experience replay is a technique used in deep reinforcement learning to improve the efficiency and stability of the learning process. The basic idea is to store experiences (tuples of state, action, reward, next state) in a replay buffer with size 𝐵, which is essentially a large dataset of past experiences. During training, some of the experiences, determined by the variable called batch size (𝑏), are randomly sampled from the replay buffer and used to update the deep neural network, instead of using onl
	Experience is defined as a tuple of current state, action, reward, and next state, (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1). The experiences that aid the agent in learning from its interaction with the environment are stored in a fixed-size memory buffer. When the buffer is full, the oldest experience is replaced with the newest to retain the most recent experiences. In an ideal scenario, all past experiences could be used to calculate the loss function for improving the model, but this would significantly slow down the lea
	5.3.2 Double DQN
	Double DQN is an extension of the original DQN algorithm that addresses the overestimation issue that can occur in Q-learning methods. In traditional Q-learning, the maximum action value for a given state is calculated using the same Q-network used to select actions, which can lead to overestimation of the action values. Double DQN uses two separate Q-networks to calculate the action values: one network is used to select actions, while the other is used to estimate the action values. The second network, cal
	actions. This approach reduces the overestimation issue that can occur in Q-learning and improves the stability and accuracy of the Q-values.
	Target network update refers to periodically updating the weights of a separate neural network, known as the target network, that is used to estimate the target Q-values in the Q-learning update.
	During training, the Q-learning update involves calculating the target Q-value for each action based on the current estimate of the Q-values and the observed reward and next state. In a standard DQN, the same neural network is used to estimate the current Q-values and the target Q-values. However, this can lead to instability in the training process, since the Q-learning update involves using the same neural network to generate the target and the prediction, leading to a feedback loop.
	To address this, the target network is updated periodically (e.g., every N steps) by copying the weights of the current Q-network to the target network. This provides a more stable estimate of the target Q-values and prevents the feedback loop. The target network is not used for action selection during the training, only for estimating the target Q-values.
	The DQN with experience replay and target network was introduced by Minh (2015) and will be adopted to train the traffic signal controller for the single intersection scenario in this research.
	The pseudocode of the DQN with experience replay and target network algorithm used in this dissertation is listed below:
	
	Figure
	Figure 5.3-1. Algorithm: Deep Q-learning with Experience Replay and Target Network
	5.4 Non-learning Traffic Signal Control Algorithms
	To evaluate the effectiveness of the proposed DQN, we compared its performance against that of two traditional traffic control algorithms (Uniform and Webster's) as well as the more recent and advanced Max-pressure algorithm. This was done to generate similar Measures of Effectiveness (MoEs) and to demonstrate the performance of our proposed model.
	5.4.1 Uniform Traffic Controller
	A uniform traffic controller (UTC) is a type of traffic control system where the signal timing plan is fixed and does not change dynamically based on real-time traffic conditions. The UTC uses a pre-determined signal plan to control traffic at an intersection, which is often designed to provide uniform signal timings for each phase of the traffic signal cycle. This type of traffic control system is widely used in areas with relatively stable traffic demand patterns and limited traffic variations. However, U
	• Here is a general procedure for implementing a uniform traffic controller:
	• Here is a general procedure for implementing a uniform traffic controller:
	• Here is a general procedure for implementing a uniform traffic controller:

	• Set the initial phase to be the first phase in the sequence.
	• Set the initial phase to be the first phase in the sequence.

	• Allocate equal green time to each phase.
	• Allocate equal green time to each phase.

	• Monitor traffic and detect when a phase has no demand. When this occurs, skip that phase in the sequence.
	• Monitor traffic and detect when a phase has no demand. When this occurs, skip that phase in the sequence.

	• When all phases have been completed, return to the first phase and start the cycle over again.
	• When all phases have been completed, return to the first phase and start the cycle over again.

	The only hyperparameter in UTC is green duration for each phase (we use the same green duration for each phase), which will be tuned with the given traffic demand.
	5.4.2 Webster’s Traffic Controller
	Webster's traffic controller, also known as the Webster method, is a type of traffic signal control algorithm developed by Anthony G. Webster in the 1950s. It is a fixed-time control method, where the green times for each phase are predetermined based on traffic flow rates and the geometric characteristics of the intersection.
	The Webster method assumes that the traffic flow rates are known and constant, and the signal timing plan is set in advance. The controller calculates the total cycle time and the duration of each green interval based on the traffic demands of each approach, the saturation flow rate, and the intersection geometry. The cycle time is the total duration of one complete signal sequence, while the green interval is the period of time when a particular movement is allowed to proceed through the intersection.
	Webster's method is relatively simple and requires minimal input data. It is widely used for low- to moderate-volume intersections and has been the basis for other traffic control methods, such as the fixed-time coordinated method. However, it may not be suitable for high-volume intersections or complex traffic conditions, where adaptive signal control methods may be more effective.
	We implement an adaptive Webster’s method by collecting traffic demand through a fixed time interval to average the traffic demand and assume that the next interval with the same length will have the similar traffic demand. Therefore, the recalculated green split will be reasonable.
	The procedure of Webster's traffic controller can be summarized as follows:
	• Collect traffic data: Traffic volume data is collected from the intersection, including the number of vehicles arriving on each lane, the queue length, and the delay time.
	• Collect traffic data: Traffic volume data is collected from the intersection, including the number of vehicles arriving on each lane, the queue length, and the delay time.
	• Collect traffic data: Traffic volume data is collected from the intersection, including the number of vehicles arriving on each lane, the queue length, and the delay time.

	• Determine cycle time: The total cycle time for the traffic signal is determined based on the traffic demand and the minimum green time required for each phase.
	• Determine cycle time: The total cycle time for the traffic signal is determined based on the traffic demand and the minimum green time required for each phase.

	• Calculate green times: The green time for each phase is calculated based on the traffic demand and the pre-determined fixed time ratios for each phase.
	• Calculate green times: The green time for each phase is calculated based on the traffic demand and the pre-determined fixed time ratios for each phase.

	• Implement the signal timings: The signal timings for each phase are programmed into the traffic signal controller, which will operate the traffic signal according to the pre-determined timings.
	• Implement the signal timings: The signal timings for each phase are programmed into the traffic signal controller, which will operate the traffic signal according to the pre-determined timings.
	• Implement the signal timings: The signal timings for each phase are programmed into the traffic signal controller, which will operate the traffic signal according to the pre-determined timings.

	• Monitor traffic flow: The traffic flow at the intersection is monitored to ensure that the traffic signal timings are effective and efficient. If necessary, the timings can be adjusted based on the traffic data collected.
	• Monitor traffic flow: The traffic flow at the intersection is monitored to ensure that the traffic signal timings are effective and efficient. If necessary, the timings can be adjusted based on the traffic data collected.

	• Repeat the process: The above steps are repeated on a regular basis, usually daily, to ensure that the traffic signal timings are optimal for the current traffic demand.
	• Repeat the process: The above steps are repeated on a regular basis, usually daily, to ensure that the traffic signal timings are optimal for the current traffic demand.

	The hyperparameters in Webster’s method include minimum cycle length, maximum cycle length, saturation flow rate, and time interval to recalculate the green time split. All of these hyperparameters will be tuned to obtain the best performance of Webster’s method for the performance comparison with other controllers.
	5.4.3 Max-pressure Traffic Signal Controller
	Max-pressure is a traffic control algorithm that aims to maximize the flow of traffic through an intersection by prioritizing the lanes with the highest pressure, which is defined as the difference between the number of vehicles entering the lane and the number of vehicles leaving the lane. The Max-pressure algorithm is a decentralized control algorithm, which means that each lane controller makes its own decisions based on local information, without requiring communication or coordination with other contro
	As indicated by the previous equation, a phase's pressure can be negative, which implies that the downstream lane has a greater vehicle queue than its incoming lane. Consequently, its pressure value turns out to be negative, making it almost impossible to be selected. The phases with higher pressure are selected more frequently in order to alleviate the pressure in the system. In this study, the Max-pressure algorithm necessitates traffic data from the intersection's surroundings, particularly the length of
	The procedure of Max-pressure traffic controller can be explained below.
	• At each time step, the controller obtains the current queue length of each outgoing lane and calculates the pressure of each phase. The phase with the highest pressure value is selected as the next phase to be executed. If there are multiple phases with the same highest pressure value, one is selected randomly.
	• At each time step, the controller obtains the current queue length of each outgoing lane and calculates the pressure of each phase. The phase with the highest pressure value is selected as the next phase to be executed. If there are multiple phases with the same highest pressure value, one is selected randomly.
	• At each time step, the controller obtains the current queue length of each outgoing lane and calculates the pressure of each phase. The phase with the highest pressure value is selected as the next phase to be executed. If there are multiple phases with the same highest pressure value, one is selected randomly.

	• After a phase is selected, the controller assigns a green time duration for the phase based on a pre-defined green time ratio. The green time ratio is the proportion of
	• After a phase is selected, the controller assigns a green time duration for the phase based on a pre-defined green time ratio. The green time ratio is the proportion of

	the total green time that a phase is assigned. The total green time is the sum of the green times of all selected phases in a cycle.
	the total green time that a phase is assigned. The total green time is the sum of the green times of all selected phases in a cycle.
	the total green time that a phase is assigned. The total green time is the sum of the green times of all selected phases in a cycle.

	• The Max-pressure controller repeats this process in each time step to ensure that the pressure of the system is reduced as much as possible.
	• The Max-pressure controller repeats this process in each time step to ensure that the pressure of the system is reduced as much as possible.

	There is only one hyperparameter in Max-pressure traffic signal control and that is the minimum green duration for a given phase, denoted as 𝑡𝑔𝑟𝑒𝑒𝑛. The hyperparameter will be optimized in order to achieve the optimal performance.
	5.5 Hyperparameter Tuning
	In machine learning, there are two types of parameters: model parameters and hyperparameters.
	Model parameters are learned during the training process. They are the weights and biases that the model learns from the data to make predictions. In supervised learning, model parameters are updated using an optimization algorithm to minimize the difference between the predicted outputs and the actual outputs for a given set of input data. For example, in a linear regression model, the model parameters are the slope and intercept of the line that best fits the data.
	Hyperparameters are set by the user before training the model. They are not learned from the data, but they affect how the model learns the model parameters. Hyperparameters control aspects of the training process such as the learning rate, regularization strength, and the number of hidden layers in a neural network. For example, in a neural network, the model parameters are the weights and biases of the neurons, while the hyperparameters are the learning rate, the number of hidden layers, the number of neu
	Both model parameters and hyperparameters are important in machine learning, and selecting the right values for both can significantly affect the performance of the trained model.
	5.5.1 Hyperparameters in DQN
	In machine learning, hyperparameters are parameters that are not learned from the data, but are set by the user before training the model. They are called "hyperparameters" because they determine how the model's parameters (which are learned from the data) will be set during the training process.
	Some examples of hyperparameters include:
	• Learning rate: determines how much the model weights are updated during training.
	• Learning rate: determines how much the model weights are updated during training.
	• Learning rate: determines how much the model weights are updated during training.

	• Number of hidden layers: determines how many layers are in the neural network.
	• Number of hidden layers: determines how many layers are in the neural network.

	• Batch size: determines how many examples are used in each iteration of training.
	• Batch size: determines how many examples are used in each iteration of training.

	• Activation function: determines the function used to transform the input data in each layer.
	• Activation function: determines the function used to transform the input data in each layer.

	Hyperparameters are typically set using trial and error or more advanced optimization methods such as grid search, random search, or Bayesian optimization. Selecting the right hyperparameters is important because it can significantly affect the performance of the trained model.
	There is no universal rule of determining the best combination of hyperparameters due to the complexity of real world environment and therefore to achieve a good machine learning model, hyperparameter tuning is required, although many research efforts do not even mention it. To our knowledge, this is the first time that a full suite of hyperparameter tuning has been applied to the traffic signal control problem and a detailed explanation of the process for applying the reinforcement learning model to traffi
	Because of the large number of hyperparameters in DQN and the many potential values for each, it is impractical to exhaustively search for the best combination. To simplify the process, this research employs the commonly used method of grid search to tune the hyperparameters. Grid search involves testing all possible combinations of hyperparameters from a predetermined list, and training the model with each combination for a small fraction of the total training time required to achieve convergence to an acc
	It should be noted that the value of some hyperparameters may be adjusted during the training process. For instance, the learning rate may be decreased as the agent gains a better understanding of the environment and the model reaches a state where a lower learning rate may allow for more exploration of local areas that were not reachable with the larger learning rate.
	It should be noted that the value of some hyperparameters may be adjusted during the training process. For instance, the learning rate may be decreased as the agent gains a better understanding of the environment and the model reaches a state where a lower learning rate may allow for more exploration of local areas that were not reachable with the larger learning rate.
	Table 5.5-1
	Table 5.5-1

	 lists all the tuned hyperparameters along with a brief definition for each.

	Table 5.5-1. Hyperparameters tuned in DQN
	Hyperparameters
	Hyperparameters
	Hyperparameters
	Hyperparameters
	Hyperparameters

	Definition
	Definition

	Reinforcement Learning Related Hyper-parameters
	Reinforcement Learning Related Hyper-parameters
	Reinforcement Learning Related Hyper-parameters

	
	

	Learning Rate
	Learning Rate
	Learning Rate

	To govern the pace the algorithm learns the parameter through previous and current rewards
	To govern the pace the algorithm learns the parameter through previous and current rewards

	Discount Factor
	Discount Factor
	Discount Factor

	Discount the future reward so not to have an infinite calculation
	Discount the future reward so not to have an infinite calculation

	Temporal Difference Steps
	Temporal Difference Steps
	Temporal Difference Steps

	Number of steps the reward will be used to calculate the target q value
	Number of steps the reward will be used to calculate the target q value

	Neural Network Related Hyper-parameters
	Neural Network Related Hyper-parameters
	Neural Network Related Hyper-parameters
	Neural Network Related Hyper-parameters
	Neural Network Related Hyper-parameters

	
	

	Number of Hidden Layers
	Number of Hidden Layers
	Number of Hidden Layers

	Number of layers between the input layer and output layer
	Number of layers between the input layer and output layer

	Target Frequency
	Target Frequency
	Target Frequency

	Number of time steps to update the target neural network
	Number of time steps to update the target neural network

	
	5.5.2 Learning Rate
	In reinforcement learning, the learning rate is a hyperparameter that determines the degree to which the agent's Q-values are updated based on new experiences. It controls the step size at which the agent updates its estimates of the optimal Q-values for each action. A small learning rate means the agent will change its estimates slowly, while a large learning rate means it will update them more quickly.
	The learning rate is typically set to a small value (e.g., 0.1 or 0.01) to ensure the agent learns gradually and avoids overfitting to specific experiences. However, the optimal learning rate can depend on the specific environment and problem being tackled, so it is often a hyperparameter that needs to be tuned through experimentation.
	Based on the existing research on single intersection, we select three values for the learning rate to be tuned, including , 10−3, 10−4, and 10−5.
	5.5.3 Discount Factor
	In reinforcement learning, the discount factor is a parameter that determines the importance of future rewards in an agent's decision-making process.
	The discount factor, denoted by γ (gamma), is a value between 0 and 1 that represents how much an agent values future rewards. A value of 0 means that the agent only cares about immediate rewards, while a value of 1 means that the agent values all rewards equally, regardless of when they occur.
	Three values are used to find the optimal one, 0.5, 0.9, and 0.99.
	5.5.4 Temporal Difference Step
	Temporal Difference (TD) is a learning method used in reinforcement learning, where the agent learns to predict the value of the next state by updating its current estimate of the value function based on the difference between the observed reward and the predicted reward. The TD step involves calculating the TD error, which is the difference between the observed reward and the predicted reward, and updating the value function estimate based on this error.
	In the TD step, the agent observes the current state, takes an action, and receives a reward and the next state. The agent uses the observed reward and the estimated value of the next state
	to calculate the TD error. The TD error is then used to update the value function estimate for the current state. This process is repeated for each time step, allowing the agent to learn to predict the value of the next state based on its current estimate of the value function. The size of the TD step is controlled by the learning rate and the discount factor.
	We use two values in the tuning process for the TD Step 1 and 2.
	5.5.5 Number of Hidden Layers
	The number of hidden layers in a reinforcement learning (RL) algorithm depends on various factors, such as the complexity of the problem and the size of the input and output spaces.
	In general, deep reinforcement learning algorithms, which use deep neural networks as function approximators, often have multiple hidden layers. The number of hidden layers can range from a few to dozens, depending on the complexity of the problem and the amount of available training data.
	However, it is important to note that the number of hidden layers is not the only factor that affects the performance of an DQN algorithm. Other factors such as the number of neurons in each layer, the activation functions used, and the optimization algorithm also play important roles in the success of a DQN algorithm.
	To reduce the number of combinations of hyperparameter tuning, we use a fixed number (64) of nodes in each hidden layer and only tune the number of hidden layers to achieve the goal of tuning the architecture of the DNNs. Based on the existing research about the single intersection scenario as well as the input definition in our simulation, we choose two values for the number of hidden layers, 3 and 6, resulting in 5 and 8 total layers for the DNNs combining with the input and output layers.
	5.5.6 Target Frequency
	In reinforcement learning, the target frequency refers to how often the target network is updated to match the parameters of the primary network. The target network is a separate copy of the primary network used to estimate the value of the next state in the Q-learning algorithm.
	The target network is updated less frequently than the primary network to provide a more stable and consistent target for the Q-learning algorithm. The target frequency is a hyperparameter that determines how often the target network is updated, and it can affect the stability and convergence speed of the algorithm.
	A common approach is to update the target network every 𝐶steps, where 𝐶 is the target frequency hyperparameter. This approach is used in the DQN algorithm, where the target network is updated every fixed number of steps.
	We choose two values for the target frequency, 64 and 128.
	
	5.5.7 Minimum Green Duration
	We also tuned the minimum green duration. This value determines the minimum green time for each phase. Two values are included in the tuning process, 6 and 12 seconds.
	5.5.8 Non Tuned Hyperparameters
	Some of the hyperparameters in the DQN are not tuned based on the fact that they are easy to be determined based on the previous research and application. In addition, it is also an effective method to reduce the total number of combinations of hyperparameters in the tuning process and hence significantly reduce the computing time.
	The replay buffer with size, denoted by 𝐵, saves a certain number of past experiences of the agent to help calculate the loss of DQN and facilitate the model to converge. It seems a larger size of replay buffer favors better model performance. However, this should be varied based on the environment. A good way to determine it is it should be large enough to collect different types of experience so the agent can handle almost every state-action pair. We use 40000 for the replay buffer size in the single int
	Batch size, denoted by 𝑏, determines the number of experiences randomly selected from the replay buffer to be passed to the model. The minimum value of it can be 1 and the largest is the size of the replay buffer. Normally, this value is equal to the power of 2 to take advantage of the computer memory unit. We use 128 in our DQN.
	The greedy factor refers to the degree to which the agent prioritizes exploitation of the current best action versus exploration of new actions. A value of 1 for the greedy factor means the agent always chooses the current best action, while a value of 0 means the agent always chooses a random action. A common approach is to start with a high value for the greedy factor to encourage exploration, and then gradually reduce it over time to focus more on exploitation. This trade-off between exploration and expl
	Episode defines the time of the training process, meaning the larger value, the longer experiment will be required. This hyperparameter is not explicitly tuned since we can easily increase the learning time as needed. For the hyperparameter tuning, we use 5000 as the value for the episode. Since each simulation lasts 3 hours, the total training time for each hyperparameter combination is equal to repeating the 3-hour simulation 5000 times, which should be a large enough simulation period to get a sense of t
	5.5.9 Summary
	Table 5.5-2
	Table 5.5-2
	Table 5.5-2

	 summarizes the parameters used in the tuning and training process. If there is only one single value, that parameter is not tuned, otherwise, it is a tuned parameter.

	Table 5.5-2. Parameters in DQN including hyperparameter values
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters

	Value/Values
	Value/Values

	Learning Rate
	Learning Rate
	Learning Rate
	Learning Rate

	[0.0001, 0.00001, 0.001]
	[0.0001, 0.00001, 0.001]

	Discount Factor
	Discount Factor
	Discount Factor

	[0.5, 0.9, 0.99]
	[0.5, 0.9, 0.99]

	TD Step
	TD Step
	TD Step

	[1, 2]
	[1, 2]

	Number of Hidden Layers
	Number of Hidden Layers
	Number of Hidden Layers

	[3, 6]
	[3, 6]

	Target Frequency
	Target Frequency
	Target Frequency

	[64, 128]
	[64, 128]

	Green Duration
	Green Duration
	Green Duration

	[6, 12]
	[6, 12]

	Episodes
	Episodes
	Episodes

	5000
	5000

	Replay Buffer Size
	Replay Buffer Size
	Replay Buffer Size

	40000
	40000

	Batch Size
	Batch Size
	Batch Size

	128
	128

	Number of Nodes Per Hidden Layer
	Number of Nodes Per Hidden Layer
	Number of Nodes Per Hidden Layer

	64
	64

	Activation Function
	Activation Function
	Activation Function

	ReLU
	ReLU

	
	Overall, we have total of 144 combinations of hyperparameters in the tuning process. Hyperparameters for non-learning controllers are list in
	Overall, we have total of 144 combinations of hyperparameters in the tuning process. Hyperparameters for non-learning controllers are list in
	Table 5.5-3
	Table 5.5-3

	.

	
	Table 5.5-3. Hyperparameters for non-learning controllers
	Hyperparameters
	Hyperparameters
	Hyperparameters
	Hyperparameters
	Hyperparameters

	Values
	Values

	Uniform Traffic Controller
	Uniform Traffic Controller
	Uniform Traffic Controller
	Uniform Traffic Controller

	
	

	Green Duration
	Green Duration
	Green Duration

	range(5, 26)
	range(5, 26)

	Webster’s Traffic Controller
	Webster’s Traffic Controller
	Webster’s Traffic Controller

	
	

	Minimum Cycle Length
	Minimum Cycle Length
	Minimum Cycle Length

	[40, 60, 80]
	[40, 60, 80]

	Maximum Cycle Length
	Maximum Cycle Length
	Maximum Cycle Length

	[160, 180, 200]
	[160, 180, 200]

	Saturation Flow Rate
	Saturation Flow Rate
	Saturation Flow Rate

	[0.3, 0.38, 0.44]
	[0.3, 0.38, 0.44]

	Time Interval (recalculate critical flow
	Time Interval (recalculate critical flow
	Time Interval (recalculate critical flow

	[600, 900, 1800]
	[600, 900, 1800]

	Table
	TBody
	TR
	ratio)
	ratio)

	Max-pressure Traffic Controller
	Max-pressure Traffic Controller
	Max-pressure Traffic Controller

	
	

	Green Duration
	Green Duration
	Green Duration

	range(5, 26)
	range(5, 26)

	
	All controllers share the same yellow duration 3 seconds and all red duration 2 seconds.
	5.6 Simulation Platform
	5.6.1 Network
	In accordance with Chapter 4, we utilized SUMO for the training and testing phases. The experiment was performed on a single intersection. The intersection comprises four legs, each of which is inclusive of three lanes: two straight movement lanes and one left-turn lane. The length of each lane is 656 feet, equivalent to approximately 200 meters. To reflect the local street environment, the design speed for all lanes is set at 40 mph. It is important to note that left-turn lanes only permit left turns, but
	5.6.2 Demand
	As outlined in Chapter 4, the SUMO software generates demand through the associated demand module, which is discussed in section 4.3.2. The origin-destination (OD) pattern is entirely random, meaning that there is no predetermined ratio between straight movement and left turn. The hourly distribution of the demand is modeled using an exponential function with a sine wave to generate a random distribution of the demand and create unpredictable traffic patterns for the simulations. Two types of total demand a
	5.6.3 Measures of Effectiveness
	The evaluation of the traffic signal controllers' performance is based on several MoEs, including the average travel time, standard deviation of travel time, queue length, and total system delay. Once the training is complete and an acceptable DQN is achieved, we will conduct 50 simulations, each lasting for 3 hours and using random seeds to ensure unbiased results. The average travel time is computed by dividing the total system travel time of all vehicles in the system by the number of vehicles. At the in
	5.6.4 Code
	We utilized an existing framework, developed by Genders and Razavi (2019), to compare the performance of various traffic signal controllers, including Uniform, adaptive Webster's, Max-pressure, and our proposed DQN with experience replay and target network. Although the framework already included the code for these controllers, we had to develop our own code for the DQN with a different reward function. However, the original code had not been maintained for years and required significant effort to make it f
	We utilized an existing framework, developed by Genders and Razavi (2019), to compare the performance of various traffic signal controllers, including Uniform, adaptive Webster's, Max-pressure, and our proposed DQN with experience replay and target network. Although the framework already included the code for these controllers, we had to develop our own code for the DQN with a different reward function. However, the original code had not been maintained for years and required significant effort to make it f
	here
	here

	.

	5.7 Results
	5.7.1 Hyperparameter Tuning Results
	In Figure 1, the results of hyperparameter tuning are depicted for both learning and non-learning traffic controllers. Figure 2 presents a consolidated view of all the hyperparameter tuning results in a single figure.
	
	Figure
	Figure 5.7-1. Hyperparameter tuning results for each controller
	
	Figure
	Figure 5.7-2. Hyperparameter tuning results for all controllers in one graph
	All sorted hyperparameter tuning results are listed from Appendix 3 to Appendix 6.
	It should be noted that the purpose of hyperparameter tuning is to enable the machine learning model to evaluate its initial performance using various combinations of model and hyperparameters. However, in the case of non-learning traffic controllers, the hyperparameter tuning process explores the performance of each hyperparameter configuration to identify the optimal performance for each controller with a specific parameter setting. As a result, our analysis of the hyperparameter tuning results primarily
	 The results indicate that DQN performance is significantly affected by the choice of hyperparameters. Therefore, it is highly recommended and necessary to perform hyperparameter tuning before training any machine learning model, as the performance of a learning model cannot be guaranteed by any specific combination of hyperparameters. This is true not only for more complex frameworks that include multiple hyperparameters but also for simpler ones like the reinforcement learning framework, Q-learning.
	The presence of a grouping effect can be observed with respect to the learning rate and the discounting factor, where a discounting factor of 0.99, which is close to 1, results in poor performance, regardless of the configuration of other parameters. Additionally, the learning rate is an important hyperparameter that has a significant impact on the model performance. This finding confirms the conclusion of the study that the learning rate plays a crucial role in ensuring that the model converges at an appro
	Interestingly, the other hyperparameters do not exhibit significant differences across different settings. In the case of the number of hidden layers, it is unlikely that adding three additional hidden layers would be necessary to extract more relevant information and enhance
	the model's performance in our single intersection scenario. Similarly, the TD step, which involves calculating one or two immediate rewards to update the DNN model, does not appear to have a significant impact. The same is true for the update frequency, which follows a similar trend.
	In summary, our experiments have demonstrated that hyperparameter tuning is crucial for achieving optimal performance when using DQN, as it is highly sensitive to the choice of hyperparameters. Among the hyperparameters that we examined, the learning rate and discount factor were found to be the most important in terms of their impact on the model's performance.
	After analyzing the hyperparameter tuning results, we selected the combination of hyperparameters that produced the best preliminary results in terms of the lowest average travel time and standard deviation of travel time for further training the DQN model. The table below provides an overview of all the parameters that were used in the DQN training process, as well as the hyperparameters for the non-learning traffic controllers.
	5.7.2 Traffic Controller Performance Comparison
	Based on the results of hyperparameter tuning, we established the value of each parameter for the extended training process of our DQN model. The hyperparameter tuning process involved 5000 episodes of 3-hour simulations, which had already demonstrated the agent's potential to outperform other non-learning traffic controllers in terms of average travel time and standard deviation of travel time, as shown in
	Based on the results of hyperparameter tuning, we established the value of each parameter for the extended training process of our DQN model. The hyperparameter tuning process involved 5000 episodes of 3-hour simulations, which had already demonstrated the agent's potential to outperform other non-learning traffic controllers in terms of average travel time and standard deviation of travel time, as shown in
	Figure 5.7-2
	Figure 5.7-2

	. Consequently, we decided to initiate a new training process using the chosen hyperparameters, but with a larger number of episodes. One reason for this decision was our method of formulating the epsilon, which is the ratio of exploration and exploitation. Instead of continuing to train the best-performing model from the hyperparameter tuning process, we chose to start anew.

	As previously stated, we gradually decreased the value of epsilon during the training process to enable the agent to explore more at the early stages and exploit more at the end of the process. By starting a new training process with a larger number of episodes, we can provide the agent with additional opportunities to explore and identify the most effective direction for improving its performance during training by adding more episodes.
	Our DQN model underwent training for 20,000 episodes, which equates to 20,000 3-hour simulations based on the given demand of approximately 6,000 vehicles in the single intersection.
	Our DQN model underwent training for 20,000 episodes, which equates to 20,000 3-hour simulations based on the given demand of approximately 6,000 vehicles in the single intersection.
	Figure 5.7-3
	Figure 5.7-3

	 depicts the system-level performance of all controllers in terms of average vehicle travel time, mean vehicle travel time, and standard deviation of vehicle travel time.

	
	Figure
	Figure 5.7-3. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand
	
	Figure
	Figure 5.7-4. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand
	Figure 5.7-4
	Figure 5.7-4
	Figure 5.7-4

	 depicts the intersection-level results, encompassing vehicle queue length and vehicle delays. In a single simulation, we should have 10,800 results for each time step. To smooth out the lines, we calculated the average values every minute, reducing the data to 180.

	For each traffic controller, we conducted 32 simulations, resulting in 32 different outcomes. In
	For each traffic controller, we conducted 32 simulations, resulting in 32 different outcomes. In
	Figure 5.7-4
	Figure 5.7-4

	, the solid line corresponds to the mean value obtained from these 32 results, while the shaded area indicates the 95% confidence interval with alpha = 0.05. During this stage of the analysis, the DQN model does not explore the environment further. Instead, it chooses the phase that maximizes the reward at each time step.

	For the intersection-level results, the x-axis represents the simulation time step, which is 180 minutes (3 hours), while the y-axis shows the queue length measured by the number of vehicles in the intersection by summing all stopped vehicles from its incoming lanes in the top graph and total delay of all vehicles in the lower graph.
	Based on the results at both the system level and intersection level, our DQN model outperforms all other considered controllers in terms of the chosen MoEs, with Max-pressure coming in second and the uniform traffic controller performing the worst, which is not surprising since we used fully random demand in the experiment. It is expected and well-known that adaptive controllers are more efficient.
	It should be noted that machine learning models are often unable to provide a clear explanation for why they perform better than non-learning controllers. This is a limitation of machine learning models, and more research is needed to make their decision-making process more explicit. However, one observation that can be made is the pattern of phase selection by the DQN.
	It should be noted that machine learning models are often unable to provide a clear explanation for why they perform better than non-learning controllers. This is a limitation of machine learning models, and more research is needed to make their decision-making process more explicit. However, one observation that can be made is the pattern of phase selection by the DQN.
	Figure 5.7-5
	Figure 5.7-5

	 depicts the percentage of frequency each phase is selected in one simulation for the DQN controller, while
	Figure 5.7-6
	Figure 5.7-6

	 shows the same for the Max-pressure. It is evident that the DQN seldom chooses the left-turn movement, accounting for only 5% of the total for the left-turn phases. It is plausible that the DQN recognizes that the straight movement phases have unprotected left-turn green light for those vehicles and that choosing the straight movement with unprotected left-turn phases is more efficient.

	
	Figure
	Figure 5.7-5. Frequency of phase selection in one simulation for DQN controller with 6,000 Demand
	
	Figure
	Figure 5.7-6. Frequency of phase selection in one simulation for Max-pressure controller with 6,000 Demand
	In addition to presenting the percentage of Max-pressure phases, we include the phase with the highest pressure based on queue length, as it is also aperiodic. In our simulations, traffic demand is random and sometimes results in more left-turning vehicles than those traveling straight, leading to more frequent activation of left-turn phases compared to the DQN controller, as indicated in
	In addition to presenting the percentage of Max-pressure phases, we include the phase with the highest pressure based on queue length, as it is also aperiodic. In our simulations, traffic demand is random and sometimes results in more left-turning vehicles than those traveling straight, leading to more frequent activation of left-turn phases compared to the DQN controller, as indicated in
	Figure 5.7-5
	Figure 5.7-5

	 and
	Figure 5.7-6
	Figure 5.7-6

	. This demonstrates the benefit of the DQN approach, which receives similar inputs but has learned a policy that utilizes unprotected left-turn green allocations for left-turn traffic instead of resorting to protected left-turn phases that introduce additional delays to the system.

	There is another possible reason related to the definition of the state. As we included the vehicle density and queue length for each lane, the agent may have learned to differentiate between them and create predictions to extend certain phases in order to reduce system loss time. It is also possible that the machine learning controller finds something that has not been found by the most smart human beings.
	We also tested the model with lower traffic demand (4,000) without hyperparameter tuning and used the same hyperparameter settings from the previous experiment, which also resulted in the best performance compared to non-learning traffic controllers, as shown in
	We also tested the model with lower traffic demand (4,000) without hyperparameter tuning and used the same hyperparameter settings from the previous experiment, which also resulted in the best performance compared to non-learning traffic controllers, as shown in
	Figure
	Figure

	5.7-7
	5.7-7
	5.7-7

	 and
	
	

	Figure
	Figure 5.7-8
	Figure 5.7-8
	. We did not initiate another round of training but utilized the results from the traffic demand of 6,000 to this lower demand scenario.

	
	Figure
	Figure 5.7-7. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand
	
	Figure
	Figure 5.7-8. Intersection Level Performance Comparison of DQN and Non-learning Controllers with 4,000 Demand
	It is reasonable that the previously trained DQN model could perform well with lower traffic demand since it had already encountered similar conditions during the training process and learned to generalize its performance. This result highlights the potential of machine learning algorithms, as they cannot only learn from higher traffic demand scenarios but also generalize their performance to lower traffic demand scenarios, outperforming non-learning traffic controllers.
	5.8 Conclusion
	To ensure the optimal performance of our proposed DQN model, we conducted experiments on various hyperparameter settings. This approach sets our research apart from others, as most of them do not perform hyperparameter tuning before the actual training process. The hyperparameter tuning process not only helped us optimize the non-learning traffic controllers, but also laid a strong foundation for the actual DQN training process.
	Based on the findings of the hyperparameter tuning, we discovered that the performance of our proposed DQN is highly influenced by the configuration of its hyperparameters. Specifically, the learning rate and discount factor were identified as the most critical hyperparameters in our single intersection scenario, while other involved hyperparameters appear to be less significant.
	Our proposed DQN, equipped with experience replay, target network, and optimized hyperparameters, has been shown through simulation experiments to provide the best performance in terms of MoEs such as average travel time, queue length, and vehicle delays. Moreover, the model is capable of generalizing well to lower traffic demand scenarios, thanks to its training process with higher traffic demand.
	Although coding and mathematical knowledge of the reinforcement learning framework are required, transportation knowledge is only minimally necessary to understand DQN. In addition to the traffic controller's principles, traditional complex traffic flow models do not have to be explicitly formulated since the AI can learn them during the training process. This advantage allows anyone interested in traffic signal controller algorithms to explore better machine learning control algorithms without extensive kn
	
	Chapter 6.
	Chapter 6.
	Grid Network Deep Reinforcement Learning Traffic Signal
	Control with Incidents
	

	6.1 Overview
	Traffic incidents within transportation networks not only raise safety concerns for travelers but also cause significant delays in the system. Traffic Incident Management (TIM) was established to mitigate the adverse effects of such incidents by promptly resolving them and restoring transport infrastructure services. While attempts have been made to use traffic signal coordination to lessen the impact of incidents, the infrequency of these events and the complexity of modeling the relationship between incid
	The aim of this study is to explore the application of machine learning techniques to reduce the consequences of traffic incidents, building upon prior research that demonstrated the superiority of DQN with hyperparameter tuning over conventional traffic control techniques such as Uniform, Webster's, and Max-pressure. This approach circumvents the need for explicit modeling of traffic flow and its relationship with signal plan configurations. Our research includes an incident generation module, as described
	We will evaluate the performance of the DQN in the context of traffic incidents by conducting experiments using two distinct network configurations: a two-intersection corridor and a 2x2 grid network, both featuring incident occurrences. Moreover, we will analyze two separate traffic demand scenarios with varying total vehicle counts to confirm the effectiveness of the DQN. To improve the AI controller's capacity to handle traffic incidents, we introduce a new state definition for the DQN.
	6.2 Literature Review
	Traffic incident management is a critical aspect of transportation system operations. It involves the coordination of multiple agencies to promptly detect, respond to, and clear incidents on road networks to minimize congestion, reduce secondary crashes, and improve overall transportation efficiency. Traffic signal control strategies are essential tools that can be leveraged to facilitate better traffic incident management. This literature review provides an overview of the key research conducted on traffic
	Carson et al. (2010) conducted a comprehensive review of traffic incident management practices in the United States. The author collected data from various sources, including federal and state departments, transportation agencies, and emergency response organizations. The study identifies best practices across different aspects of traffic incident management, such as incident detection, response, clearance, and communication. The study concludes that adopting best practices in traffic incident management ca
	communication, and standardized protocols in achieving better traffic incident management outcomes. Additionally, it emphasizes the need for continuous training, performance measurement, and improvement to ensure the successful implementation of best practices.
	Goodall et al. (2013) conducted a qualitative analysis of traffic incident management practices across multiple agencies. Interviews and surveys were used to collect data on collaboration and communication among agencies involved in traffic incident management. The study concludes that effective inter-agency collaboration and communication are crucial to successful traffic incident management. It recommends the development of integrated systems and standardized procedures to facilitate better collaboration
	These studies show performance improvement of transportation systems can be gained by adjusting the traffic signal control plan during traffic incidents in the network. One of many difficulties is how to provide a solid and reasonable strategy to adjust the traffic signal plan accordingly. Gartner et al. (2001) reviewed existing Traffic-Responsive Plan Selection (TRPS) systems and their methodologies. It also conducted a comparative analysis of their performance in various traffic scenarios. The study finds
	Traditional research uses model-based methods and microsimulation to investigate the proposed signal control plan optimization strategies. Mirchandani and Head (2001) reviewed model-based traffic signal control strategies, focusing on multiple-objective optimization approaches. The authors explore various algorithms and their applicability in incident management scenarios. The study concludes that model-based traffic signal control strategies can effectively address multiple objectives, such as minimizing d
	Aboudolas et al. (2010) explores the use of Model Predictive Control (MPC) as an adaptive traffic signal control strategy. It develops a simulation model to evaluate the performance of MPC in various traffic scenarios, including incidents. The study finds that MPC can effectively adjust traffic signal timings during incidents, leading to reduced delays and improved traffic flow. It recommends further research on the development and evaluation of MPC in real-world traffic scenarios.
	One significant limitation of using model-based methods to find the optimal traffic signal control plan for reducing the impact of network traffic incidents is the dependenence on the model accuracy . Due to the complexity of the transportation network system, this is too hard to be practical.
	Current research has begun to use machine learning methods to conquer the limitation of traditional model-based methods of traffic signal adjustment. Hadiuzzaman et al. (2012) proposed a methodology for adjusting traffic signal timings during incidents using Artificial Neural Networks (ANNs). It develops an ANN-based model and evaluates its performance in terms of reducing delays and congestion in simulated traffic scenarios. The study concludes that the proposed ANN-based methodology can effectively adjust
	incidents, leading to reduced delays and improved traffic flow. It recommends further research on the development and evaluation of ANN-based traffic signal control strategies in real-world traffic scenarios. However, the research did not explain the hyperparameters decision which makes the research hard to duplicate and the compared signal controllers do not include more advanced controllers such as Max-pressure.
	This paper will fill the gap by investigating the impact of several key hyperparameters in the deep reinforcement learnig, especially Deep Q-Network (DQN), to optimize traffic signal control algorithms with traffic incident occurance. This will provide practical guidance for researchers and enable implementations of deep reinforcement learning signal control algorithms to reduce impacts of incidents in transportation networks.
	6.3 Incident Generation
	We have developed an incident generation module within the open-source microsimulation platform, SUMO, to expose the machine learning controller to situations involving traffic incidents within the network. This approach creates relevant experiences for the AI controller to learn from and enhance its decision-making process regarding traffic phase selection. To the best of our knowledge, this is the first instance of incorporating the incident concept into SUMO.
	In our simulation, we consider both single-vehicle and multiple-vehicle incidents. We represent the number of vehicles involved by using a single vehicle in SUMO with varying lengths, assuming each vehicle measures 5 meters in length with an additional 2.5-meter gap between stopped vehicles. For example, a two-vehicle incident would occupy 15 meters of lane space.
	The incident generation module randomly selects a lane connecting two intersections to emulate the coordination impact between traffic controllers. In our scenario, each identical intersection features two straight movement lanes and one left-turn lane. We present two potential incident locations: on the straight movement lane or the left-turn lane. To simplify the learning process and minimize the risk of gridlock, we restrict incident locations to the straight movement lanes.
	The incident vehicle's route is generated randomly, adhering to the requirement that it passes through at least two intersections. This ensures that the incident affects multiple intersections rather than just one. Our simulation schedules the incident randomly during the second hour of the three-hour simulation period, allowing most vehicles to complete their trips. Incident durations are assumed to be either 15 or 30 minutes.
	Additionally, we incorporate emergency service vehicles into the incident generation module to simulate the rescue process impact. Representing an abstraction of multiple service vehicles, the emergency vehicle varies in length from 22.5 to 45 meters. It is generated 5 minutes after an incident is detected and travels from a random origin, stopping next to the incident location until the incident vehicle moves.
	Under these conditions, traffic flow is significantly affected by the incident, allowing us to observe the intersection controllers' responses. The Uniform traffic controller maintains its
	fixed pattern and green phase duration, offering no response to the incident. In contrast, the Webster's traffic controller adjusts its phases to accommodate the new traffic pattern by either reducing or extending the current phase. The Max-pressure and DQN traffic controllers, with their acyclic phase selection capabilities, should theoretically perform better in such scenarios, as they can choose suitable phases in any given situation.
	6.4 New State
	Transportation networks can be significantly disrupted by the occurrence of incidents. One consequence is that vehicles behind the incident point may become stuck, regardless of the amount of green time allocated. Adaptive traffic controllers struggle to account for this feature to enhance their performance. To address this issue, we introduce a new state for the proposed DQN to further improve its capabilities.
	The new state is defined as the queue that could potentially be reduced by allocating green time and monitoring vehicles that have not been able to move after experiencing green phases. This approach ensures that the queue information passed to the DQN model is more accurate. We apply this new state only to the DQN, as we have established in the previous chapter that it outperforms other traffic controllers in single intersection scenarios. In this chapter, our goal is to determine the extent of the DQN's p
	To implement the new state collection, information on each individual vehicle's location and the most recent phase is required. If a vehicle's location has not changed compared to the previous time step, and the vehicle has already experienced a green phase for its traveling direction, we can deduce that the vehicle is stuck in the system and will be removed from the queue calculation.
	The DQN model employed in this chapter maintains the same structure as the one used in the previous chapter, including its action and reward system, as well as the incorporation of experience replay and target network. The DNN structure also remains similar, utilizing the ReLU activation function and fully connected hidden layers. However, the primary distinction lies in the increased number of hidden layers used in this chapter. This is due to the heightened complexity of corridor and grid networks with tr
	6.5 Simulation Settings
	To demonstrate the performance of the DQN, we compare it with three other traffic signal controllers: Uniform, Webster's, and Max-pressure. Definitions and implementation details for each traffic signal controller can be found in the previous chapter, which focuses on single intersection scenarios. It is important to note that the new state definition is applied to both the DQN and Max-pressure controllers, as they both depend on queue information to adjust their phase choices. The simulation spans a three-
	6.5.1 Network
	We employ two network configurations to assess the performance of non-learning traffic controllers and the DQN in scenarios involving incidents: a two-intersection corridor and a 2x2 grid network, illustrated in
	We employ two network configurations to assess the performance of non-learning traffic controllers and the DQN in scenarios involving incidents: a two-intersection corridor and a 2x2 grid network, illustrated in
	Figure 6.5-1
	Figure 6.5-1

	 and
	Figure 6.5-2
	Figure 6.5-2

	, respectively. Each intersection in these network configurations is identical to the single intersection examined in the previous chapter.

	
	Figure
	Figure 6.5-1. Corridor with two intersections
	
	Figure
	Figure 6.5-2. 2x2 Grid Network
	6.5.2 Demand
	In the simulations, we will employ two distinct traffic demands, consisting of 4,000 and 6,000 vehicles, respectively. Although these demands are not overly heavy for the two networks in the absence of incidents, the network becomes congested when an incident takes place, presenting an opportunity for traffic controllers to adjust their phase selection and enhance network performance.
	The presence of an incident in the network can lead to longer queues at one or more intersections compared to a situation without incidents. This can significantly diminish the network's performance, which can be improved by employing adaptive traffic controllers such as Webster's, Max-pressure, and a trained DQN.
	
	6.6 Hyperparameter Tuning
	Drawing on our experience with hyperparameter tuning in the single intersection scenario, we have determined that the most crucial hyperparameters to adjust are the learning rate and discount factor. To minimize computing time, we have limited the hyperparameter tuning list to three values for each parameter. For the remaining parameters, we will use the hyperparameters obtained from the single intersection tuning. Furthermore, we have increased the number of hidden layers in the DNN from 3 to 6 to augment
	Drawing on our experience with hyperparameter tuning in the single intersection scenario, we have determined that the most crucial hyperparameters to adjust are the learning rate and discount factor. To minimize computing time, we have limited the hyperparameter tuning list to three values for each parameter. For the remaining parameters, we will use the hyperparameters obtained from the single intersection tuning. Furthermore, we have increased the number of hidden layers in the DNN from 3 to 6 to augment
	Table 6.6-1
	Table 6.6-1

	 presents the parameters employed during the training process for the corridor and grid networks, as well as other non-tuning parameters used in the DQN.

	Table 6.6-1. Parameters used in DQN controller for the corridor and grid network
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters

	Value/Values
	Value/Values

	Learning Rate
	Learning Rate
	Learning Rate
	Learning Rate

	[0.0001, 0.00001, 0.001]
	[0.0001, 0.00001, 0.001]

	Discount Factor
	Discount Factor
	Discount Factor

	[0.5, 0.7, 0.9]
	[0.5, 0.7, 0.9]

	TD Step
	TD Step
	TD Step

	2
	2

	Number of Hidden Layers
	Number of Hidden Layers
	Number of Hidden Layers

	6
	6

	Target Frequency
	Target Frequency
	Target Frequency

	128
	128

	Green Duration
	Green Duration
	Green Duration

	6
	6

	Episodes
	Episodes
	Episodes

	5000
	5000

	Replay Buffer Size
	Replay Buffer Size
	Replay Buffer Size

	40000
	40000

	Batch Size
	Batch Size
	Batch Size

	128
	128

	Number of Nodes Per Hidden Layer
	Number of Nodes Per Hidden Layer
	Number of Nodes Per Hidden Layer

	64
	64

	Activation Function
	Activation Function
	Activation Function

	ReLU
	ReLU

	6.7 Results
	6.7.1 Hyperparameter Tuning Results
	Hyperparameter tuning is carried out for both the corridor and grid (2x2 intersections) networks with a higher traffic demand of 6,000 vehicles.
	Hyperparameter tuning is carried out for both the corridor and grid (2x2 intersections) networks with a higher traffic demand of 6,000 vehicles.
	Figure 6.7-1
	Figure 6.7-1

	 and
	Figure 6.7-2
	Figure 6.7-2

	 consolidate the results of hyperparameter tuning for each controller into a single figure to facilitate a better understanding of each controller's performance after hyperparameter tuning, where
	Figure 6.7-3
	Figure 6.7-3

	 and
	Figure 6.7-4
	Figure 6.7-4

	 show the combined results. Appendix 11 to 14 provide a comprehensive list of hyperparameter tuning results for all four controllers.

	It is important to note that the DQN's performance is not finalized, as we still need to train the model instead of directly applying the preliminary results from hyperparameter tuning. In contrast, the performance of the other three controllers is determined due to their non-learning properties. The rationale behind using the incident scenario to train the DQN is to expose the controller to experiences involving traffic interruptions caused by incidents, thereby enabling it to better adapt its actions for
	
	Figure
	Figure 6.7-1. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Separate Graph)
	
	Figure
	Figure 6.7-2. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Separate Graph)
	
	
	Figure
	Figure 6.7-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Combined Graph)
	
	Figure
	Figure 6.7-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Combined Graph)
	It is noticeable that the performance of the DQN across different hyperparameter combination settings is not as varied as seen in the single intersection hyperparameter tuning results. This is because we have already narrowed down the potential values to be included in the hyperparameter tuning process. Another observation is that, with proper hyperparameter settings, the performance of the best DQN model can be on par with Max-pressure even without being trained extensively.
	To analyze the fact that traditional non-learning controllers struggle to handle varying traffic situations, such as networks with or without incidents even for the same traffic demand, we also conducted hyperparameter tuning for the 2x2 grid network with a 6,000-vehicle demand and no incidents in the network.
	To analyze the fact that traditional non-learning controllers struggle to handle varying traffic situations, such as networks with or without incidents even for the same traffic demand, we also conducted hyperparameter tuning for the 2x2 grid network with a 6,000-vehicle demand and no incidents in the network.
	Figure 6.7-5
	Figure 6.7-5

	 and
	Figure 6.7-6
	Figure 6.7-6

	 display the hyperparameter tuning results, while Appendix 15 to 18 provide more detailed information on the results.

	
	Figure
	Figure 6.7-5. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Separate Graph)
	
	
	Figure
	Figure 6.7-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Combined Graph)
	By comparing the best hyperparameter settings from all controllers, we can see that the learning model employs almost the same settings, with the only difference being the learning rate. However, the second-best results use the same settings in both incident and non-incident scenarios for the DQN. In contrast, non-learning controllers utilize entirely different settings to compensate for the varying traffic patterns in the two scenarios.
	6.7.2 Controller Performance Comparison
	Using the best hyperparameter tuning settings for all controllers, we can compare their performance at both the system and intersection levels. For the learning model, DQN, we need to train it to achieve convergence. However, for non-learning controllers, we can simply use the best hyperparameters to generate the results. Each controller will be simulated 32 times to obtain a range of results, overcoming the randomness effect of using just a single simulation to verify its performance.
	Using the best hyperparameter tuning settings for all controllers, we can compare their performance at both the system and intersection levels. For the learning model, DQN, we need to train it to achieve convergence. However, for non-learning controllers, we can simply use the best hyperparameters to generate the results. Each controller will be simulated 32 times to obtain a range of results, overcoming the randomness effect of using just a single simulation to verify its performance.
	Figure 6.7-7
	Figure 6.7-7

	 displays the system-level results, including the mean travel time of all vehicles in the network with incidents in the corridor network, while
	Figure 6.7-8
	Figure 6.7-8

	 illustrates the intersection-level performance.

	
	Figure
	Figure 6.7-7. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network
	
	Figure
	Figure 6.7-8. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network
	Figure 6.7-9
	Figure 6.7-9
	Figure 6.7-9

	 and
	Figure 6.7-10
	Figure 6.7-10

	 depict the same performance measurement for the 2x2 grid network but with the presence of incidents.

	
	Figure
	Figure 6.7-9. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network
	
	Figure
	Figure 6.7-10. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network
	In contrast to the corridor scenario, the incident causes a significant amount of delay in the grid network, which can be seen by the end period of the simulation, where the queue length does not return to 0 due to unfinished vehicles. This is expected, as we did not allocate extra time for the simulation but only allowed a 3-hour simulation for all situations.
	Incidents in both networks cause the controller's performance to vary significantly, but the mean travel time clearly shows that the fine-tuned and trained DQN outperforms other controllers with the lowest mean travel time and the lowest standard deviation of mean travel time.
	We also applied the model to the same demand without incidents in the network to see if the DQN controller can handle the situation for both incident and non-incident networks, even with the same training model. The logic behind this is that during the training process, the DQN controller also experiences the time when there is no incident in the network, as we only introduce the incident to the network for a certain amount of time out of the 3-hour simulation period.
	Figure 6.7-11
	Figure 6.7-11
	Figure 6.7-11

	 to
	Figure 6.7-14
	Figure 6.7-14

	 show the results when applying the incident model directly to the non-incident scenario with the same traffic demand for both networks, including corridor and grid networks.

	
	Figure
	Figure 6.7-11. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network
	
	Figure
	Figure 6.7-12. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network
	
	Figure
	Figure 6.7-13. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network
	
	
	Figure
	Figure 6.7-14. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network
	It is evident that the DQN outperforms the other controllers by directly applying the incident model to the non-incident situation.
	In addition to testing the same model in scenarios with and without incidents, we also apply the same model to cases with lower traffic demand. We reduce the demand by half, resulting in about 4,000 vehicle demand in the following simulations.
	In addition to testing the same model in scenarios with and without incidents, we also apply the same model to cases with lower traffic demand. We reduce the demand by half, resulting in about 4,000 vehicle demand in the following simulations.
	Figure 6.7-15
	Figure 6.7-15

	 to
	Figure 6.7-22
	Figure 6.7-22

	 display the performance of each traffic signal controller when applying its model from the 6,000-demand scenario with incidents to the 4,000-demand scenario, both with and without incidents.

	
	Figure
	Figure 6.7-15. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network
	
	Figure
	Figure 6.7-16. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network
	
	Figure
	Figure 6.7-17. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network
	
	Figure
	Figure 6.7-18. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network
	
	Figure
	Figure 6.7-19. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network
	
	Figure
	Figure 6.7-20. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network
	
	Figure
	Figure 6.7-21. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network
	
	
	Figure
	Figure 6.7-22. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network
	In general, the application of the DQN model to scenarios with lower traffic volumes, both with and without incidents, demonstrates its notable performance advantage over non-learning models. A peculiar observation from the above figures emerges in the 4,000-demand incident grid network scenario, where direct application of the model encounters some issues toward the end of the simulation. This is likely due to the DQN model's limited exposure to scenarios where vehicles are cleared from the network followi
	To address this limitation, we conduct further training of the original model in a scenario with a traffic demand of 4,000 and an incident.
	To address this limitation, we conduct further training of the original model in a scenario with a traffic demand of 4,000 and an incident.
	Figure 6.7-23
	Figure 6.7-23

	 and
	Figure 6.7-24
	Figure 6.7-24

	 showcase the results of this refined approach. The results shows that the DQN can be improved further by exposing it to enough training time.

	
	Figure
	Figure 6.7-23. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network (with further training)
	
	Figure
	Figure 6.7-24. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network(with further training)
	6.8 Conclusion
	In conclusion, this chapter has presented a comprehensive comparative analysis between the DQN traffic signal controller and the traditional non-learning traffic signal controller
	techniques under the influence of traffic incidents in the network. Through rigorous evaluation, it has been demonstrated that the DQN traffic signal controller significantly outperforms its non-learning counterparts. The ability of the DQN controller to adapt and learn from its environment, coupled with its capacity to handle unpredictable traffic situations, enables it to provide more efficient and effective traffic signal timings.
	We employ two distinct network configurations, a 2-intersection corridor and a 2x2 grid network, to assess the performance of these controllers when confronted with traffic incidents. After fine-tuning hyperparameters and further training the DQN controller, we generate results for comparison. Additionally, we apply the model to a scenario without incidents to obtain similar comparative results, highlighting the superior performance of the DQN model. We also investigate lower demand scenarios both with and
	The implementation of the DQN traffic signal controller has shown great promise in minimizing congestion, reducing travel time, and enhancing overall traffic flow in the presence of traffic incidents. By incorporating state-of-the-art machine learning techniques, the DQN traffic signal controller effectively manages traffic demands, mitigating the impact of incidents on urban mobility. As a result, this innovative approach offers substantial benefits to cities and urban planners by paving the way for a more
	
	
	
	

	Chapter 7.
	Chapter 7.
	Summary and
	Conclusion
	s
	

	7.1 Summary
	In recent years, reinforcement learning (RL) has emerged as a promising approach to optimizing traffic signal control. This technique involves enabling traffic signals to learn and adapt to real-time traffic conditions autonomously, resulting in reduced congestion, improved traffic flow, and enhanced road safety. Traditional traffic signal control methods, such as fixed-time and actuated systems, have shown limitations in handling dynamic traffic conditions. Reinforcement learning overcomes these limitation
	This dissertation examines the efficacy of the simplest reinforcement learning framework, Q-learning, integrated with deep neural networks for optimizing traffic signal control in various network configurations, both with and without traffic incidents. Chapter 2 presents an extensive literature review to assess the current state of research and implementation of reinforcement learning in traffic signal control optimization. Various reinforcement learning approaches have been investigated to enhance intersec
	In Chapter 3, the main focus is on addressing these two gaps by elucidating the concept of reinforcement learning, with an emphasis on Q-learning, which when combined with deep neural networks, results in the formation of a deep Q-network (DQN). The chapter not only highlights the benefits of DQN but also discusses its drawbacks and various modifications, such as the incorporation of target networks and experience replay, which can be employed to improve DQN performance.
	Chapter 4 outlines the creation of an incident generation module within an open-source microsimulation platform, SUMO. This module assists in generating experiences for the DQN agent, enabling it to gather crucial information from simulations involving traffic incidents. Consequently, the agent learns to modify the traffic signal controller to minimize the network's incident impact. The developed module simplifies the effects of single or multiple vehicle occurrences into a single vehicle with varying lengt
	Chapter 5 carries out an in-depth hyperparameter tuning of the DQN within a single intersection simulation scenario. This chapter identifies the most significant hyperparameters in the DQN model, such as the learning rate and reward discount factor. An extensive computational process is undertaken to determine the optimal combination of hyperparameters for both learning (DQN) and non-learning traffic signal controllers (Max-pressure, Uniform, and Websters) within the single intersection scenario. Upon compl
	In Chapter 6, the DQN agent is introduced to a more complex environment, incorporating various network configurations (corridor and 2x2 grid network) and randomly generated incidents within the network. Utilizing the hyperparameter tuning results from the single intersection scenario, the range of potential values for the learning rate and discount factor is narrowed when tuning the corridor and 2x2 grid network DQN models. Experimental results reveal that the DQN outperforms non-learning controllers in bot
	7.2 Directions for Future Research
	In future work, we plan to explore the application of more advanced reinforcement learning (RL) frameworks to optimize traffic signal control performance. By leveraging cutting-edge algorithms and techniques such as multi-agent RL, hierarchical RL, and deep RL, we aim to create a more efficient and adaptive traffic signal control system that can better handle complex urban environments. This will involve designing reward functions that capture various objectives, such as reducing congestion, minimizing trav
	In addition, we aim to focus on the practical implementation of reinforcement learning-based traffic signal control systems, bridging the gap between theoretical advancements and real-world applications. This will involve addressing challenges such as system integration, computational efficiency, and robustness to uncertainties, while ensuring that the system can be seamlessly integrated into existing traffic management infrastructures. Additionally, we plan to collaborate with local authorities, transporta
	technical feasibility, regulatory compliance, and public acceptance, we strive to deploy an effective reinforcement learning-based traffic signal control system that can contribute to more efficient, safe, and sustainable urban transportation networks.
	Machine learning, as the driving force behind the future of technology, holds immense potential for revolutionizing traffic signal control systems. As urban centers continue to expand, the optimization of traffic flow has become increasingly critical to reduce congestion, fuel consumption, and emissions. Studying and implementing machine learning techniques in traffic signal control can lead to adaptive and intelligent systems that dynamically respond to real-time traffic conditions, enhancing overall effic
	
	
	Chapter 8.
	Chapter 8.
	Glossary
	

	AI
	AI
	AI
	AI
	AI

	Artificial Intelligence
	Artificial Intelligence

	CFP
	CFP
	CFP
	CFP

	Cyclic Flow Profiles
	Cyclic Flow Profiles

	DP
	DP
	DP

	Dynamic Programming
	Dynamic Programming

	DTA
	DTA
	DTA

	Dynamic Traffic Assignment
	Dynamic Traffic Assignment

	DQN
	DQN
	DQN

	Deep Q Network
	Deep Q Network

	DNN
	DNN
	DNN

	Deep Neural Network
	Deep Neural Network

	MDP
	MDP
	MDP

	Markov Decision Process
	Markov Decision Process

	MC
	MC
	MC

	Monte Carlo
	Monte Carlo

	MOEs
	MOEs
	MOEs

	Measurement of Effectiveness
	Measurement of Effectiveness

	OPAC
	OPAC
	OPAC

	Optimized Policies for Adaptive Control
	Optimized Policies for Adaptive Control

	RHODES
	RHODES
	RHODES

	Real-Time Hierarchical Optimized Distributed and Effective System
	Real-Time Hierarchical Optimized Distributed and Effective System

	RIMS
	RIMS
	RIMS

	Rutgers Incident Management System
	Rutgers Incident Management System

	SCATS
	SCATS
	SCATS

	Sydney Coordinated Adaptive Traffic System
	Sydney Coordinated Adaptive Traffic System

	SCOOT
	SCOOT
	SCOOT

	Split Cycle Offset Optimization Technique
	Split Cycle Offset Optimization Technique

	SOTL
	SOTL
	SOTL

	Self-Organizing Traffic Light
	Self-Organizing Traffic Light

	TRRL
	TRRL
	TRRL

	Transport and Road Research Laboratory
	Transport and Road Research Laboratory

	TIM
	TIM
	TIM

	Traffic Incident Management
	Traffic Incident Management

	TD
	TD
	TD

	Temporal Difference
	Temporal Difference

	VISTA
	VISTA
	VISTA

	Visual Interactive System for Transport Algorithms
	Visual Interactive System for Transport Algorithms

	SUMO
	SUMO
	SUMO

	Simulation of Urban Mobility
	Simulation of Urban Mobility

	
	Chapter 9.
	Chapter 9.
	References
	

	1. Aboudolas, K. M. A. E., Papageorgiou, M., Kouvelas, A., & Kosmatopoulos, E. (2010). A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies, 18(5), 680-694.
	1. Aboudolas, K. M. A. E., Papageorgiou, M., Kouvelas, A., & Kosmatopoulos, E. (2010). A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies, 18(5), 680-694.
	1. Aboudolas, K. M. A. E., Papageorgiou, M., Kouvelas, A., & Kosmatopoulos, E. (2010). A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies, 18(5), 680-694.

	2. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2011, October). Traffic light control in non-stationary environments based on multi agent Q-learning. In 2011 14th International IEEE conference on intelligent transportation systems (ITSC) (pp. 1580-1585). IEEE.
	2. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2011, October). Traffic light control in non-stationary environments based on multi agent Q-learning. In 2011 14th International IEEE conference on intelligent transportation systems (ITSC) (pp. 1580-1585). IEEE.

	3. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2014). Hierarchical control of traffic signals using Q-learning with tile coding. Applied intelligence, 40(2), 201-213.
	3. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2014). Hierarchical control of traffic signals using Q-learning with tile coding. Applied intelligence, 40(2), 201-213.

	4. Abdulhai, B., Pringle, R., & Karakoulas, G. J. (2003). Reinforcement learning for true adaptive traffic signal control. Journal of Transportation Engineering, 129(3), 278-285.
	4. Abdulhai, B., Pringle, R., & Karakoulas, G. J. (2003). Reinforcement learning for true adaptive traffic signal control. Journal of Transportation Engineering, 129(3), 278-285.

	5. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938.
	5. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938.

	6. Akcelik, R., Besley, M., & Chung, E. (1998). An evaluation of SCATS Master Isolated control. In ARRB TRANSPORT RESEARCH LTD CONFERENCE, 19TH, 1998, SYDNEY, NEW SOUTH WALES, AUSTRALIA.
	6. Akcelik, R., Besley, M., & Chung, E. (1998). An evaluation of SCATS Master Isolated control. In ARRB TRANSPORT RESEARCH LTD CONFERENCE, 19TH, 1998, SYDNEY, NEW SOUTH WALES, AUSTRALIA.

	7. Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-agent system for network traffic signal control. IET Intelligent Transport Systems, 4(2), 128-135.
	7. Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-agent system for network traffic signal control. IET Intelligent Transport Systems, 4(2), 128-135.

	8. Balaji, P. G., German, X., & Srinivasan, D. (2010). Urban traffic signal control using reinforcement learning agents. IET Intelligent Transport Systems, 4(3), 177-188.
	8. Balaji, P. G., German, X., & Srinivasan, D. (2010). Urban traffic signal control using reinforcement learning agents. IET Intelligent Transport Systems, 4(3), 177-188.

	9. Ban, X. J., Kamga, C., Wang, X., Wojtowicz, J., Klepadlo, E., Sun, Z., & Mouskos, K. (2014). Adaptive Traffic Signal Control System (ACS-Lite) for Wolf Road, Albany, New York (No. C-10-13). New York (State). Dept. of Transportation.
	9. Ban, X. J., Kamga, C., Wang, X., Wojtowicz, J., Klepadlo, E., Sun, Z., & Mouskos, K. (2014). Adaptive Traffic Signal Control System (ACS-Lite) for Wolf Road, Albany, New York (No. C-10-13). New York (State). Dept. of Transportation.

	10. Ban, X., Wojtowicz, J. M., & Li, W. (2016). Decision-making tool for applying adaptive traffic control systems (No. C-13-04). New York State Energy Research and Development Authority.
	10. Ban, X., Wojtowicz, J. M., & Li, W. (2016). Decision-making tool for applying adaptive traffic control systems (No. C-13-04). New York State Energy Research and Development Authority.

	11. Bell, M. G. (1992). Future directions in traffic signal control. Transportation Research Part A: Policy and Practice, 26(4), 303-313.
	11. Bell, M. G. (1992). Future directions in traffic signal control. Transportation Research Part A: Policy and Practice, 26(4), 303-313.

	12. Carson, J. L. (2010). Best practices in traffic incident management (No. FHWA-HOP-10-050). United States. Federal Highway Administration. Office of Transportation Operations.
	12. Carson, J. L. (2010). Best practices in traffic incident management (No. FHWA-HOP-10-050). United States. Federal Highway Administration. Office of Transportation Operations.

	13. Chin, Y. K., Bolong, N., Kiring, A., Yang, S. S., & Teo, K. T. K. (2011). Q-learning based traffic optimization in management of signal timing plan. International Journal of Simulation, Systems, Science & Technology, 12(3), 29-35.
	13. Chin, Y. K., Bolong, N., Kiring, A., Yang, S. S., & Teo, K. T. K. (2011). Q-learning based traffic optimization in management of signal timing plan. International Journal of Simulation, Systems, Science & Technology, 12(3), 29-35.

	14. Cools, S. B., Gershenson, C., & D’Hooghe, B. (2013). Self-organizing traffic lights: A realistic simulation. In Advances in applied self-organizing systems (pp. 45-55). Springer, London.
	14. Cools, S. B., Gershenson, C., & D’Hooghe, B. (2013). Self-organizing traffic lights: A realistic simulation. In Advances in applied self-organizing systems (pp. 45-55). Springer, London.

	15. Dell, P. A. O. L. O., & Mirchandani, B. (1995). REALBAND: An approach for real-time coordination of traffic flows on networks. Transp. Res. Rec, 1494, 106-116.
	15. Dell, P. A. O. L. O., & Mirchandani, B. (1995). REALBAND: An approach for real-time coordination of traffic flows on networks. Transp. Res. Rec, 1494, 106-116.

	16. Dougald, L. E., Venkatanarayana, R., & Goodall, N. J. (2016). Traffic incident management quick clearance guidance and implications (No. FHWA/VTRC 16-R9, VTRC 16-R9). Virginia Transportation Research Council.
	16. Dougald, L. E., Venkatanarayana, R., & Goodall, N. J. (2016). Traffic incident management quick clearance guidance and implications (No. FHWA/VTRC 16-R9, VTRC 16-R9). Virginia Transportation Research Council.

	17. Dutta, U., Lynch, J., Dara, B., & Bodke, S. (2010). Safety Evaluation of the SCATS Control System (No. RC-1545K).
	17. Dutta, U., Lynch, J., Dara, B., & Bodke, S. (2010). Safety Evaluation of the SCATS Control System (No. RC-1545K).

	18. El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2014). Design of reinforcement learning parameters for seamless application of adaptive traffic signal control. Journal of Intelligent Transportation Systems, 18(3), 227-245.
	18. El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2014). Design of reinforcement learning parameters for seamless application of adaptive traffic signal control. Journal of Intelligent Transportation Systems, 18(3), 227-245.
	18. El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2014). Design of reinforcement learning parameters for seamless application of adaptive traffic signal control. Journal of Intelligent Transportation Systems, 18(3), 227-245.

	19. Fellendorf, M. (1994, October). VISSIM: A microscopic simulation tool to evaluate actuated signal control including bus priority. In 64th Institute of Transportation Engineers Annual Meeting (Vol. 32, pp. 1-9). Springer.
	19. Fellendorf, M. (1994, October). VISSIM: A microscopic simulation tool to evaluate actuated signal control including bus priority. In 64th Institute of Transportation Engineers Annual Meeting (Vol. 32, pp. 1-9). Springer.

	20. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2001, August). Implementation of the OPAC adaptive control strategy in a traffic signal network. In ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585) (pp. 195-200). IEEE.
	20. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2001, August). Implementation of the OPAC adaptive control strategy in a traffic signal network. In ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585) (pp. 195-200). IEEE.

	21. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2002). Optimized policies for adaptive control strategy in real-time traffic adaptive control systems: Implementation and field testing. Transportation Research Record, 1811(1), 148-156.
	21. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2002). Optimized policies for adaptive control strategy in real-time traffic adaptive control systems: Implementation and field testing. Transportation Research Record, 1811(1), 148-156.

	22. Gartner, N. H. (2005, October). Development of demand-responsive strategies for urban traffic control. In System Modelling and Optimization: Proceedings of the 11th IFIP Conference Copenhagen, Denmark, July 25–29, 1983 (pp. 166-174). Berlin, Heidelberg: Springer Berlin Heidelberg.
	22. Gartner, N. H. (2005, October). Development of demand-responsive strategies for urban traffic control. In System Modelling and Optimization: Proceedings of the 11th IFIP Conference Copenhagen, Denmark, July 25–29, 1983 (pp. 166-174). Berlin, Heidelberg: Springer Berlin Heidelberg.

	23. Gayah, V. V., Gao, X. S., & Nagle, A. S. (2014). On the impacts of locally adaptive signal control on urban network stability and the macroscopic fundamental diagram. Transportation Research Part B: Methodological, 70, 255-268.
	23. Gayah, V. V., Gao, X. S., & Nagle, A. S. (2014). On the impacts of locally adaptive signal control on urban network stability and the macroscopic fundamental diagram. Transportation Research Part B: Methodological, 70, 255-268.

	24. Ge, H., Song, Y., Wu, C., Ren, J., & Tan, G. (2019). Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control. IEEE Access, 7, 40797-40809.
	24. Ge, H., Song, Y., Wu, C., Ren, J., & Tan, G. (2019). Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control. IEEE Access, 7, 40797-40809.

	25. Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning agent for traffic signal control. arXiv preprint arXiv:1611.01142.
	25. Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning agent for traffic signal control. arXiv preprint arXiv:1611.01142.

	26. Gershenson, C. (2005). A general methodology for designing self-organizing systems. arXiv preprint nlin/0505009.
	26. Gershenson, C. (2005). A general methodology for designing self-organizing systems. arXiv preprint nlin/0505009.

	27. Ghaman, R. S. (2007). ACS Lite: A Signal Timing Strategy for Closed Loop Systems. In ITE 2007 Annual Meeting and ExhibitInstitute of Transportation Engineers (ITE).
	27. Ghaman, R. S. (2007). ACS Lite: A Signal Timing Strategy for Closed Loop Systems. In ITE 2007 Annual Meeting and ExhibitInstitute of Transportation Engineers (ITE).

	28. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
	28. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

	29. Goodfellow, I., McDaniel, P., & Papernot, N. (2018). Making machine learning robust against adversarial inputs. Communications of the ACM, 61(7), 56-66.
	29. Goodfellow, I., McDaniel, P., & Papernot, N. (2018). Making machine learning robust against adversarial inputs. Communications of the ACM, 61(7), 56-66.

	30. Hadiuzzaman, M., Qiu, T. Z., & Lin, Y. (2012). Real-time Traffic State Estimation and Prediction for Active Traffic and Demand Management: The Application of DynaTAM. In CICTP 2012: Multimodal Transportation Systems—Convenient, Safe, Cost-Effective, Efficient (pp. 3335-3351).
	30. Hadiuzzaman, M., Qiu, T. Z., & Lin, Y. (2012). Real-time Traffic State Estimation and Prediction for Active Traffic and Demand Management: The Application of DynaTAM. In CICTP 2012: Multimodal Transportation Systems—Convenient, Safe, Cost-Effective, Efficient (pp. 3335-3351).

	31. Head, K. L., Mirchandani, P. B., & Sheppard, D. (1992). Hierarchical framework for real-time traffic control (No. 1360).
	31. Head, K. L., Mirchandani, P. B., & Sheppard, D. (1992). Hierarchical framework for real-time traffic control (No. 1360).

	32. Howard, R. A. (1960). Dynamic programming and markov processes.
	32. Howard, R. A. (1960). Dynamic programming and markov processes.

	33. Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Winton, R. I. (1981). SCOOT-a traffic responsive method of coordinating signals (No. LR 1014 Monograph).
	33. Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Winton, R. I. (1981). SCOOT-a traffic responsive method of coordinating signals (No. LR 1014 Monograph).

	34. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90
	34. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90

	35. Kell, J. H., & Fullerton, I. J. (1991). Manual of traffic signal design.
	35. Kell, J. H., & Fullerton, I. J. (1991). Manual of traffic signal design.

	36. Klein, L. A. (2001). Sensor technologies and data requirements for ITS.
	36. Klein, L. A. (2001). Sensor technologies and data requirements for ITS.

	37. Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of SUMO-Simulation of Urban MObility. International journal on advances in systems and measurements, 5(3&4).
	37. Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of SUMO-Simulation of Urban MObility. International journal on advances in systems and measurements, 5(3&4).
	37. Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of SUMO-Simulation of Urban MObility. International journal on advances in systems and measurements, 5(3&4).

	38. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444
	38. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444

	39. Lin, F. B. (1985). Optimal timing settings and detector lengths of presence mode full-actuated control (No. 1010).
	39. Lin, F. B. (1985). Optimal timing settings and detector lengths of presence mode full-actuated control (No. 1010).

	40. Lin, L. J. (1992). Reinforcement learning for robots using neural networks. Carnegie Mellon University.
	40. Lin, L. J. (1992). Reinforcement learning for robots using neural networks. Carnegie Mellon University.

	41. Liu, H., & Hall, R. (2000). INCISM: Users Manual.
	41. Liu, H., & Hall, R. (2000). INCISM: Users Manual.

	42. Logi, F., & Ritchie, S. G. (2001). Development and evaluation of a knowledge-based system for traffic congestion management and control. Transportation Research Part C: Emerging Technologies, 9(6), 433-459.
	42. Logi, F., & Ritchie, S. G. (2001). Development and evaluation of a knowledge-based system for traffic congestion management and control. Transportation Research Part C: Emerging Technologies, 9(6), 433-459.

	43. Lowrie, P. R. (1990). Scats, sydney co-ordinated adaptive traffic system: A traffic responsive method of controlling urban traffic.
	43. Lowrie, P. R. (1990). Scats, sydney co-ordinated adaptive traffic system: A traffic responsive method of controlling urban traffic.

	44. Mao, T., Mihaita, A. S., & Cai, C. (2019). Traffic signal control optimization under severe incident conditions using Genetic Algorithm. arXiv preprint arXiv:1906.05356.
	44. Mao, T., Mihaita, A. S., & Cai, C. (2019). Traffic signal control optimization under severe incident conditions using Genetic Algorithm. arXiv preprint arXiv:1906.05356.

	
	45. Markov, A. A. (1954). The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA Steklova, 42, 3-375.
	45. Markov, A. A. (1954). The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA Steklova, 42, 3-375.
	45. Markov, A. A. (1954). The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA Steklova, 42, 3-375.

	46. McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological review, 102(3), 419.
	46. McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological review, 102(3), 419.

	47. Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: architecture, algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6), 415-432.
	47. Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: architecture, algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6), 415-432.

	48. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.
	48. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.

	49. Shoufeng, L., Ximin, L., & Shiqiang, D. (2008, April). Q-learning for adaptive traffic signal control based on delay minimization strategy. In 2008 IEEE International Conference on Networking, Sensing and Control (pp. 687-691). IEEE.
	49. Shoufeng, L., Ximin, L., & Shiqiang, D. (2008, April). Q-learning for adaptive traffic signal control based on delay minimization strategy. In 2008 IEEE International Conference on Networking, Sensing and Control (pp. 687-691). IEEE.

	50. Slinn, M., Matthews, P., & Guest, P. (1998). Traffic engineering design. Principles and practice.
	50. Slinn, M., Matthews, P., & Guest, P. (1998). Traffic engineering design. Principles and practice.

	51. Stevanovic, A., Kergaye, C., & Martin, P. T. (2009, November). Scoot and scats: A closer look into their operations. In 88th Annual Meeting of the Transportation Research Board. Washington DC.
	51. Stevanovic, A., Kergaye, C., & Martin, P. T. (2009, November). Scoot and scats: A closer look into their operations. In 88th Annual Meeting of the Transportation Research Board. Washington DC.

	52. Ozbay, K., & Bartin, B. (2003). Incident management simulation. Simulation, 79(2), 69-82.
	52. Ozbay, K., & Bartin, B. (2003). Incident management simulation. Simulation, 79(2), 69-82.

	53. Ozbay, K. M., Xiao, W., Jaiswal, G., Bartin, B., Kachroo, P., & Baykal-Gursoy, M. (2009). Evaluation of incident management strategies and technologies using an integrated traffic/incident management simulation. World Review of Intermodal Transportation Research, 2(2-3), 155-186.
	53. Ozbay, K. M., Xiao, W., Jaiswal, G., Bartin, B., Kachroo, P., & Baykal-Gursoy, M. (2009). Evaluation of incident management strategies and technologies using an integrated traffic/incident management simulation. World Review of Intermodal Transportation Research, 2(2-3), 155-186.

	54. Prashanth, L. A., & Bhatnagar, S. (2010). Reinforcement learning with function approximation for traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 12(2), 412-421.
	54. Prashanth, L. A., & Bhatnagar, S. (2010). Reinforcement learning with function approximation for traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 12(2), 412-421.

	55. Robertson, D. I. (1969). TRANSYT: a traffic network study tool.
	55. Robertson, D. I. (1969). TRANSYT: a traffic network study tool.
	55. Robertson, D. I. (1969). TRANSYT: a traffic network study tool.

	56. Robertson, D. I. (1986). Research on the TRANSYT and SCOOT Methods of Signal Coordination. ITE journal, 56(1), 36-40.
	56. Robertson, D. I. (1986). Research on the TRANSYT and SCOOT Methods of Signal Coordination. ITE journal, 56(1), 36-40.

	57. Roess, R. P., Prassas, E. S., & McShane, W. R. (2004). Traffic engineering. Pearson/Prentice Hall.
	57. Roess, R. P., Prassas, E. S., & McShane, W. R. (2004). Traffic engineering. Pearson/Prentice Hall.

	58. Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.
	58. Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.

	59. Shelby, S. G., Bullock, D. M., Gettman, D., Ghaman, R. S., Sabra, Z. A., & Soyke, N. (2008, January). An overview and performance evaluation of ACS Lite–a low cost adaptive signal control system. In Transportation Research Board Annual Meeting (Vol. 190, pp. 130-137).
	59. Shelby, S. G., Bullock, D. M., Gettman, D., Ghaman, R. S., Sabra, Z. A., & Soyke, N. (2008, January). An overview and performance evaluation of ACS Lite–a low cost adaptive signal control system. In Transportation Research Board Annual Meeting (Vol. 190, pp. 130-137).

	60. Skabardonis, A., Bertini, R. L., & Gallagher, B. R. (1998). Development and application of control strategies for signalized intersections in coordinated systems. Transportation research record, 1634(1), 110-117.
	60. Skabardonis, A., Bertini, R. L., & Gallagher, B. R. (1998). Development and application of control strategies for signalized intersections in coordinated systems. Transportation research record, 1634(1), 110-117.

	61. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
	61. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

	62. Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(4), 1502-1509.
	62. Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(4), 1502-1509.

	63. Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).
	63. Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).

	64. Varaiya, P. (2013). Max pressure control of a network of signalized intersections. Transportation Research Part C: Emerging Technologies, 36, 177-195.
	64. Varaiya, P. (2013). Max pressure control of a network of signalized intersections. Transportation Research Part C: Emerging Technologies, 36, 177-195.

	65. Wang, S. C. (2003). Artificial neural network. In Interdisciplinary computing in java programming (pp. 81-100). Springer, Boston, MA.
	65. Wang, S. C. (2003). Artificial neural network. In Interdisciplinary computing in java programming (pp. 81-100). Springer, Boston, MA.

	66. Watkins, C. J. C. H. (1989). Learning from delayed rewards.
	66. Watkins, C. J. C. H. (1989). Learning from delayed rewards.

	67. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3), 279-292.
	67. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3), 279-292.

	68. Webster, F. V. (1958). Traffic signal settings, road research technical paper no. 39. Road Research Laboratory.
	68. Webster, F. V. (1958). Traffic signal settings, road research technical paper no. 39. Road Research Laboratory.

	69. Winston, P. H. (1992). Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc..
	69. Winston, P. H. (1992). Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc..

	70. Wirtz, J. J., Schofer, J. L., & Schulz, D. F. (2005). Using simulation to test traffic incident management strategies: The benefits of preplanning. Transportation research record, 1923(1), 82-90.
	70. Wirtz, J. J., Schofer, J. L., & Schulz, D. F. (2005). Using simulation to test traffic incident management strategies: The benefits of preplanning. Transportation research record, 1923(1), 82-90.

	71. Yin, Y., Li, M., & Skabardonis, A. (2007). Offline offset refiner for coordinated actuated signal control systems. Journal of transportation engineering, 133(7), 423-432.
	71. Yin, Y., Li, M., & Skabardonis, A. (2007). Offline offset refiner for coordinated actuated signal control systems. Journal of transportation engineering, 133(7), 423-432.

	
	
	
	

	
	
	

	Appendi
	Appendi
	x
	
	1
	:
	
	SUMO Network Generation Script
	

	The command below was run to generate the 4x4 grid network illustrated in this paper.
	netgenerate --grid --grid.number=4 --grid.length=200 --default.lanenumber=2 --default.speed=20 --no-turnarounds=true --turn-lanes=1 --turn-lanes.length=100 --default-junction-type=traffic_light --grid.attach-length=200 --tls.yellow.time=3 --tls.left-green.time=12 --tls.allred.time = 2 --output-file=net.net.xml
	Network generating parameters and their meanings:
	--grid: grid network will be generated. SUMO also provides for other types of networks to be generated automatically, including spider and random networks.
	--grid.length defines the length of each intersection leg in meters
	--default.lanenumber defines the number of lanes for each approach
	--default.speed defines the edge design speed in meters/second
	--no-turnarounds defines whether to allow turn around for the left turn lane
	--turn-lanes defines the number of left turn lanes
	--turn-lanes.length defines the length of left turn lanes
	--default-junction-type defines the intersections in the network are controlled by the pretimed traffic signals
	--grid.attach-length defines the length of road attached to the fringe of intersections in the network
	--tls.yellow.time defines the duration of yellow phase in seconds
	--tls.left-green.time defines the protected left turn movement green time in seconds
	--tls.allred.time defines the duration of all red phase in seconds
	More options of calling NETGENERATE could be found in https://sumo.dlr.de/docs/netgenerate.html.
	
	
	

	Appendix 2: Developed Traffic Demand Generating S
	Appendix 2: Developed Traffic Demand Generating S
	cript
	

	Traffic demand was prepared by calling python randomTrips.py -n net.net.xml -r random.rou.xml --fringe-factor=100000000 --period=0.5 -e 3600.
	Where randomTrips.py is a Python script tool provided by SUMO.
	-n net.net.xml defines the location of the network file.
	-r defines the name of the output route file.
	--fringe-factor defines the ratios of through and internal traffic demand in the network. An extremely large number is used here to eliminate the internal traffic demand in the network.
	--period defines the 1/number of vehicles generated per second. 0.5 used here means two vehicles will be generated per second in the network.
	-e defines the end simulation step of generating trips so here one hour traffic demand is generated.
	
	
	

	Appendix 3:
	Appendix 3:
	DQN
	Hype
	rparameter Tuning Results for Single
	Intersection Network
	

	ID
	ID
	ID
	ID
	ID

	Discount Factor
	Discount Factor

	Green Duration (seconds)
	Green Duration (seconds)

	Learnig Rate
	Learnig Rate

	Number of Hidden Layers
	Number of Hidden Layers

	Temporal Difference Steps
	Temporal Difference Steps

	Update Frequency
	Update Frequency

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	64
	64

	54
	54

	29
	29

	2
	2
	2

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	64
	64

	55
	55

	31
	31

	3
	3
	3

	0.5
	0.5

	6
	6

	0.001
	0.001

	6
	6

	1
	1

	128
	128

	56
	56

	37
	37

	4
	4
	4

	0.5
	0.5

	6
	6

	0.001
	0.001

	6
	6

	2
	2

	64
	64

	56
	56

	34
	34

	5
	5
	5

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	3
	3

	2
	2

	128
	128

	57
	57

	40
	40

	6
	6
	6

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	6
	6

	2
	2

	128
	128

	57
	57

	36
	36

	7
	7
	7

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	128
	128

	57
	57

	32
	32

	8
	8
	8

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	128
	128

	57
	57

	37
	37

	9
	9
	9

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	64
	64

	57
	57

	33
	33

	10
	10
	10

	0.5
	0.5

	6
	6

	0.001
	0.001

	3
	3

	2
	2

	128
	128

	57
	57

	36
	36

	11
	11
	11

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	64
	64

	57
	57

	35
	35

	12
	12
	12

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	3
	3

	2
	2

	64
	64

	58
	58

	40
	40

	13
	13
	13

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	128
	128

	58
	58

	39
	39

	14
	14
	14

	0.5
	0.5

	6
	6

	0.001
	0.001

	6
	6

	1
	1

	64
	64

	58
	58

	39
	39

	15
	15
	15

	0.5
	0.5

	6
	6

	0.001
	0.001

	6
	6

	2
	2

	128
	128

	58
	58

	40
	40

	16
	16
	16

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	128
	128

	58
	58

	35
	35

	17
	17
	17

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	3
	3

	1
	1

	64
	64

	59
	59

	40
	40

	18
	18
	18

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	3
	3

	1
	1

	128
	128

	59
	59

	43
	43

	19
	19
	19

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	128
	128

	59
	59

	32
	32

	20
	20
	20

	0.5
	0.5

	6
	6

	0.001
	0.001

	3
	3

	1
	1

	128
	128

	59
	59

	37
	37

	21
	21
	21

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	64
	64

	60
	60

	42
	42

	22
	22
	22

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	3
	3

	1
	1

	64
	64

	60
	60

	33
	33

	23
	23
	23

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	3
	3

	1
	1

	128
	128

	60
	60

	39
	39

	24
	24
	24

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	6
	6

	1
	1

	64
	64

	61
	61

	46
	46

	25
	25
	25
	25
	25

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	6
	6

	2
	2

	64
	64

	61
	61

	46
	46

	26
	26
	26

	0.5
	0.5

	6
	6

	0.001
	0.001

	3
	3

	1
	1

	64
	64

	61
	61

	46
	46

	27
	27
	27

	0.5
	0.5

	6
	6

	0.001
	0.001

	3
	3

	2
	2

	64
	64

	61
	61

	48
	48

	28
	28
	28

	0.9
	0.9

	6
	6

	0.001
	0.001

	3
	3

	1
	1

	128
	128

	61
	61

	43
	43

	29
	29
	29

	0.5
	0.5

	6
	6

	0.0001
	0.0001

	6
	6

	1
	1

	128
	128

	63
	63

	52
	52

	30
	30
	30

	0.9
	0.9

	6
	6

	0.001
	0.001

	3
	3

	1
	1

	64
	64

	64
	64

	38
	38

	31
	31
	31

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	128
	128

	65
	65

	51
	51

	32
	32
	32

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	3
	3

	1
	1

	64
	64

	66
	66

	35
	35

	33
	33
	33

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	3
	3

	2
	2

	64
	64

	66
	66

	43
	43

	34
	34
	34

	0.9
	0.9

	12
	12

	0.001
	0.001

	3
	3

	2
	2

	128
	128

	67
	67

	61
	61

	35
	35
	35

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	3
	3

	2
	2

	128
	128

	69
	69

	41
	41

	36
	36
	36

	0.9
	0.9

	6
	6

	0.001
	0.001

	6
	6

	2
	2

	64
	64

	71
	71

	57
	57

	37
	37
	37

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	3
	3

	2
	2

	128
	128

	72
	72

	69
	69

	38
	38
	38

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	6
	6

	1
	1

	64
	64

	72
	72

	71
	71

	39
	39
	39

	0.5
	0.5

	12
	12

	0.001
	0.001

	3
	3

	2
	2

	64
	64

	72
	72

	69
	69

	40
	40
	40

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	3
	3

	2
	2

	64
	64

	72
	72

	45
	45

	41
	41
	41

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	6
	6

	1
	1

	128
	128

	73
	73

	70
	70

	42
	42
	42

	0.5
	0.5

	12
	12

	0.001
	0.001

	3
	3

	1
	1

	64
	64

	73
	73

	72
	72

	43
	43
	43

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	3
	3

	1
	1

	128
	128

	73
	73

	56
	56

	44
	44
	44

	0.9
	0.9

	6
	6

	0.001
	0.001

	3
	3

	2
	2

	128
	128

	73
	73

	67
	67

	45
	45
	45

	0.9
	0.9

	6
	6

	0.001
	0.001

	6
	6

	2
	2

	128
	128

	73
	73

	73
	73

	46
	46
	46

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	3
	3

	2
	2

	64
	64

	74
	74

	71
	71

	47
	47
	47

	0.5
	0.5

	12
	12

	0.001
	0.001

	3
	3

	1
	1

	128
	128

	74
	74

	75
	75

	48
	48
	48

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	128
	128

	75
	75

	56
	56

	49
	49
	49

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	6
	6

	2
	2

	128
	128

	76
	76

	79
	79

	50
	50
	50

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	64
	64

	76
	76

	78
	78

	51
	51
	51

	0.5
	0.5

	12
	12

	0.001
	0.001

	6
	6

	1
	1

	128
	128

	76
	76

	78
	78

	52
	52
	52

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	64
	64

	76
	76

	48
	48

	53
	53
	53

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	6
	6

	2
	2

	128
	128

	76
	76

	79
	79

	54
	54
	54

	0.9
	0.9

	12
	12

	0.001
	0.001

	6
	6

	2
	2

	128
	128

	76
	76

	80
	80

	55
	55
	55

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	128
	128

	77
	77

	79
	79

	56
	56
	56
	56
	56

	0.5
	0.5

	12
	12

	0.001
	0.001

	6
	6

	1
	1

	64
	64

	77
	77

	81
	81

	57
	57
	57

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	128
	128

	77
	77

	81
	81

	58
	58
	58

	0.5
	0.5

	12
	12

	0.0001
	0.0001

	6
	6

	2
	2

	64
	64

	78
	78

	82
	82

	59
	59
	59

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	128
	128

	78
	78

	82
	82

	60
	60
	60

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	128
	128

	78
	78

	81
	81

	61
	61
	61

	0.9
	0.9

	12
	12

	0.001
	0.001

	3
	3

	2
	2

	64
	64

	78
	78

	80
	80

	62
	62
	62

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	6
	6

	2
	2

	64
	64

	78
	78

	81
	81

	63
	63
	63

	0.9
	0.9

	6
	6

	0.001
	0.001

	3
	3

	2
	2

	64
	64

	78
	78

	81
	81

	64
	64
	64

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	6
	6

	2
	2

	64
	64

	78
	78

	81
	81

	65
	65
	65

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	6
	6

	1
	1

	64
	64

	78
	78

	82
	82

	66
	66
	66

	0.9
	0.9

	12
	12

	0.001
	0.001

	6
	6

	1
	1

	128
	128

	78
	78

	82
	82

	67
	67
	67

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	64
	64

	79
	79

	83
	83

	68
	68
	68

	0.5
	0.5

	12
	12

	0.001
	0.001

	3
	3

	2
	2

	128
	128

	79
	79

	82
	82

	69
	69
	69

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	3
	3

	2
	2

	64
	64

	79
	79

	74
	74

	70
	70
	70

	0.5
	0.5

	12
	12

	0.001
	0.001

	6
	6

	2
	2

	64
	64

	80
	80

	84
	84

	71
	71
	71

	0.5
	0.5

	12
	12

	0.001
	0.001

	6
	6

	2
	2

	128
	128

	80
	80

	86
	86

	72
	72
	72

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	3
	3

	2
	2

	128
	128

	80
	80

	82
	82

	73
	73
	73

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	64
	64

	80
	80

	84
	84

	74
	74
	74

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	64
	64

	81
	81

	87
	87

	75
	75
	75

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	64
	64

	81
	81

	74
	74

	76
	76
	76

	0.9
	0.9

	12
	12

	0.001
	0.001

	3
	3

	1
	1

	64
	64

	81
	81

	79
	79

	77
	77
	77

	0.9
	0.9

	12
	12

	0.001
	0.001

	3
	3

	1
	1

	128
	128

	81
	81

	81
	81

	78
	78
	78

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	128
	128

	81
	81

	85
	85

	79
	79
	79

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	64
	64

	82
	82

	88
	88

	80
	80
	80

	0.9
	0.9

	12
	12

	0.001
	0.001

	6
	6

	1
	1

	64
	64

	82
	82

	86
	86

	81
	81
	81

	0.9
	0.9

	12
	12

	0.0001
	0.0001

	6
	6

	1
	1

	128
	128

	82
	82

	88
	88

	82
	82
	82

	0.5
	0.5

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	128
	128

	84
	84

	87
	87

	83
	83
	83

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	3
	3

	2
	2

	128
	128

	85
	85

	87
	87

	84
	84
	84

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	64
	64

	85
	85

	92
	92

	85
	85
	85
	85
	85

	0.9
	0.9

	12
	12

	0.001
	0.001

	6
	6

	2
	2

	64
	64

	87
	87

	90
	90

	86
	86
	86

	0.99
	0.99

	12
	12

	0.001
	0.001

	6
	6

	2
	2

	128
	128

	90
	90

	138
	138

	87
	87
	87

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	3
	3

	1
	1

	64
	64

	92
	92

	81
	81

	88
	88
	88

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	64
	64

	93
	93

	106
	106

	89
	89
	89

	0.9
	0.9

	6
	6

	0.001
	0.001

	6
	6

	1
	1

	128
	128

	94
	94

	96
	96

	90
	90
	90

	0.99
	0.99

	12
	12

	0.001
	0.001

	3
	3

	2
	2

	128
	128

	98
	98

	204
	204

	91
	91
	91

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	3
	3

	1
	1

	128
	128

	99
	99

	117
	117

	92
	92
	92

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	128
	128

	101
	101

	100
	100

	93
	93
	93

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	64
	64

	103
	103

	112
	112

	94
	94
	94

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	6
	6

	2
	2

	128
	128

	104
	104

	133
	133

	95
	95
	95

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	128
	128

	105
	105

	128
	128

	96
	96
	96

	0.9
	0.9

	6
	6

	0.001
	0.001

	6
	6

	1
	1

	64
	64

	107
	107

	141
	141

	97
	97
	97

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	3
	3

	2
	2

	128
	128

	115
	115

	166
	166

	98
	98
	98

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	6
	6

	1
	1

	64
	64

	129
	129

	219
	219

	99
	99
	99

	0.9
	0.9

	6
	6

	0.0001
	0.0001

	6
	6

	1
	1

	128
	128

	131
	131

	181
	181

	100
	100
	100

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	6
	6

	2
	2

	128
	128

	131
	131

	366
	366

	101
	101
	101

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	128
	128

	137
	137

	115
	115

	102
	102
	102

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	6
	6

	1
	1

	128
	128

	144
	144

	270
	270

	103
	103
	103

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	3
	3

	1
	1

	128
	128

	150
	150

	282
	282

	104
	104
	104

	0.99
	0.99

	12
	12

	0.001
	0.001

	6
	6

	1
	1

	128
	128

	152
	152

	444
	444

	105
	105
	105

	0.9
	0.9

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	64
	64

	156
	156

	141
	141

	106
	106
	106

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	128
	128

	156
	156

	471
	471

	107
	107
	107

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	6
	6

	1
	1

	128
	128

	160
	160

	180
	180

	108
	108
	108

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	6
	6

	1
	1

	64
	64

	173
	173

	177
	177

	109
	109
	109

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	6
	6

	2
	2

	64
	64

	190
	190

	566
	566

	110
	110
	110

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	128
	128

	195
	195

	139
	139

	111
	111
	111

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	3
	3

	2
	2

	64
	64

	207
	207

	351
	351

	112
	112
	112

	0.99
	0.99

	12
	12

	0.001
	0.001

	3
	3

	1
	1

	128
	128

	213
	213

	696
	696

	113
	113
	113

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	6
	6

	2
	2

	64
	64

	221
	221

	623
	623

	114
	114
	114

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	3
	3

	1
	1

	64
	64

	224
	224

	434
	434

	115
	115
	115
	115
	115

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	64
	64

	234
	234

	165
	165

	116
	116
	116

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	128
	128

	268
	268

	185
	185

	117
	117
	117

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	3
	3

	1
	1

	128
	128

	274
	274

	353
	353

	118
	118
	118

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	64
	64

	284
	284

	227
	227

	119
	119
	119

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	128
	128

	284
	284

	232
	232

	120
	120
	120

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	6
	6

	2
	2

	128
	128

	294
	294

	800
	800

	121
	121
	121

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	128
	128

	305
	305

	206
	206

	122
	122
	122

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	128
	128

	307
	307

	260
	260

	123
	123
	123

	0.99
	0.99

	6
	6

	0.0001
	0.0001

	3
	3

	1
	1

	64
	64

	308
	308

	568
	568

	124
	124
	124

	0.99
	0.99

	6
	6

	0.001
	0.001

	3
	3

	2
	2

	64
	64

	341
	341

	862
	862

	125
	125
	125

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	128
	128

	341
	341

	1165
	1165

	126
	126
	126

	0.99
	0.99

	6
	6

	0.001
	0.001

	3
	3

	1
	1

	128
	128

	344
	344

	1054
	1054

	127
	127
	127

	0.99
	0.99

	12
	12

	0.001
	0.001

	6
	6

	1
	1

	64
	64

	347
	347

	1110
	1110

	128
	128
	128

	0.99
	0.99

	6
	6

	0.001
	0.001

	6
	6

	1
	1

	128
	128

	354
	354

	1174
	1174

	129
	129
	129

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	64
	64

	361
	361

	289
	289

	130
	130
	130

	0.99
	0.99

	12
	12

	0.001
	0.001

	3
	3

	2
	2

	64
	64

	364
	364

	1156
	1156

	131
	131
	131

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	64
	64

	369
	369

	1188
	1188

	132
	132
	132

	0.99
	0.99

	6
	6

	0.001
	0.001

	6
	6

	2
	2

	128
	128

	370
	370

	1191
	1191

	133
	133
	133

	0.99
	0.99

	12
	12

	0.001
	0.001

	3
	3

	1
	1

	64
	64

	391
	391

	1017
	1017

	134
	134
	134

	0.99
	0.99

	6
	6

	0.001
	0.001

	6
	6

	2
	2

	64
	64

	400
	400

	1076
	1076

	135
	135
	135

	0.99
	0.99

	6
	6

	0.001
	0.001

	3
	3

	1
	1

	64
	64

	403
	403

	1243
	1243

	136
	136
	136

	0.99
	0.99

	6
	6

	0.001
	0.001

	3
	3

	2
	2

	128
	128

	424
	424

	1029
	1029

	137
	137
	137

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	3
	3

	1
	1

	64
	64

	496
	496

	931
	931

	138
	138
	138

	0.99
	0.99

	12
	12

	0.0001
	0.0001

	6
	6

	1
	1

	64
	64

	504
	504

	1216
	1216

	139
	139
	139

	0.99
	0.99

	12
	12

	1.00E-05
	1.00E-05

	3
	3

	2
	2

	64
	64

	655
	655

	1117
	1117

	140
	140
	140

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	128
	128

	728
	728

	1536
	1536

	141
	141
	141

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	2
	2

	64
	64

	1104
	1104

	1554
	1554

	142
	142
	142

	0.99
	0.99

	6
	6

	0.001
	0.001

	6
	6

	1
	1

	64
	64

	1129
	1129

	2038
	2038

	143
	143
	143
	143
	143

	0.99
	0.99

	12
	12

	0.001
	0.001

	6
	6

	2
	2

	64
	64

	1184
	1184

	1985
	1985

	144
	144
	144

	0.99
	0.99

	6
	6

	1.00E-05
	1.00E-05

	6
	6

	1
	1

	64
	64

	1263
	1263

	2072
	2072

	
	
	
	

	Appendix 4: Max
	Appendix 4: Max
	-
	pressure Hyperparameter Tuning Results for
	Single Intersection Network
	

	ID
	ID
	ID
	ID
	ID

	Green Duration
	Green Duration

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	7
	7

	56
	56

	22
	22

	2
	2
	2

	9
	9

	58
	58

	22
	22

	3
	3
	3

	8
	8

	58
	58

	24
	24

	4
	4
	4

	12
	12

	59
	59

	25
	25

	5
	5
	5

	11
	11

	60
	60

	25
	25

	6
	6
	6

	10
	10

	60
	60

	26
	26

	7
	7
	7

	6
	6

	59
	59

	29
	29

	8
	8
	8

	5
	5

	61
	61

	34
	34

	9
	9
	9

	13
	13

	61
	61

	35
	35

	10
	10
	10

	14
	14

	61
	61

	36
	36

	11
	11
	11

	16
	16

	63
	63

	39
	39

	12
	12
	12

	15
	15

	66
	66

	49
	49

	13
	13
	13

	18
	18

	70
	70

	58
	58

	14
	14
	14

	17
	17

	71
	71

	58
	58

	15
	15
	15

	20
	20

	75
	75

	69
	69

	16
	16
	16

	19
	19

	76
	76

	71
	71

	17
	17
	17

	21
	21

	79
	79

	77
	77

	18
	18
	18

	22
	22

	81
	81

	81
	81

	19
	19
	19

	24
	24

	82
	82

	82
	82

	20
	20
	20

	23
	23

	84
	84

	85
	85

	21
	21
	21

	25
	25

	84
	84

	87
	87

	
	
	
	

	Appendix 5: Uniform Hyperparameter Tuning Results for Single
	Appendix 5: Uniform Hyperparameter Tuning Results for Single
	Intersection Network
	

	ID
	ID
	ID
	ID
	ID

	Green Duration (seconds)
	Green Duration (seconds)

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	21
	21

	81
	81

	39
	39

	2
	2
	2

	22
	22

	81
	81

	39
	39

	3
	3
	3

	23
	23

	82
	82

	39
	39

	4
	4
	4

	25
	25

	84
	84

	40
	40

	5
	5
	5

	24
	24

	84
	84

	42
	42

	6
	6
	6

	16
	16

	82
	82

	50
	50

	7
	7
	7

	19
	19

	84
	84

	48
	48

	8
	8
	8

	17
	17

	84
	84

	52
	52

	9
	9
	9

	18
	18

	85
	85

	53
	53

	10
	10
	10

	20
	20

	86
	86

	52
	52

	11
	11
	11

	14
	14

	84
	84

	55
	55

	12
	12
	12

	15
	15

	89
	89

	62
	62

	13
	13
	13

	12
	12

	95
	95

	75
	75

	14
	14
	14

	13
	13

	96
	96

	74
	74

	15
	15
	15

	11
	11

	106
	106

	87
	87

	16
	16
	16

	10
	10

	123
	123

	106
	106

	17
	17
	17

	9
	9

	125
	125

	105
	105

	18
	18
	18

	8
	8

	164
	164

	141
	141

	19
	19
	19

	7
	7

	170
	170

	144
	144

	20
	20
	20

	6
	6

	202
	202

	168
	168

	21
	21
	21

	5
	5

	250
	250

	203
	203

	
	
	
	

	Appendix 6: Webster’s Hyperparameter Tuning Results for
	Appendix 6: Webster’s Hyperparameter Tuning Results for
	
	Single
	Intersection Network
	

	
	ID
	ID
	ID
	ID
	ID

	Max Cycle Length (seconds)
	Max Cycle Length (seconds)

	Min Cycle Length (seconds)
	Min Cycle Length (seconds)

	Time Interval (seconds)
	Time Interval (seconds)

	Satuation Flow Rate
	Satuation Flow Rate

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	200
	200

	60
	60

	600
	600

	0.38
	0.38

	74
	74

	42
	42

	2
	2
	2

	180
	180

	40
	40

	600
	600

	0.38
	0.38

	75
	75

	44
	44

	3
	3
	3

	160
	160

	60
	60

	600
	600

	0.38
	0.38

	75
	75

	45
	45

	4
	4
	4

	160
	160

	40
	40

	600
	600

	0.38
	0.38

	75
	75

	48
	48

	5
	5
	5

	200
	200

	40
	40

	600
	600

	0.44
	0.44

	74
	74

	49
	49

	6
	6
	6

	200
	200

	40
	40

	1800
	1800

	0.44
	0.44

	75
	75

	48
	48

	7
	7
	7

	180
	180

	60
	60

	600
	600

	0.38
	0.38

	76
	76

	49
	49

	8
	8
	8

	160
	160

	60
	60

	600
	600

	0.44
	0.44

	75
	75

	51
	51

	9
	9
	9

	180
	180

	40
	40

	1800
	1800

	0.44
	0.44

	76
	76

	51
	51

	10
	10
	10

	200
	200

	40
	40

	600
	600

	0.38
	0.38

	76
	76

	51
	51

	11
	11
	11

	160
	160

	40
	40

	600
	600

	0.44
	0.44

	76
	76

	52
	52

	12
	12
	12

	180
	180

	40
	40

	600
	600

	0.44
	0.44

	75
	75

	53
	53

	13
	13
	13

	160
	160

	40
	40

	600
	600

	0.3
	0.3

	80
	80

	49
	49

	14
	14
	14

	180
	180

	40
	40

	600
	600

	0.3
	0.3

	80
	80

	49
	49

	15
	15
	15

	160
	160

	40
	40

	1800
	1800

	0.44
	0.44

	77
	77

	53
	53

	16
	16
	16

	160
	160

	80
	80

	600
	600

	0.38
	0.38

	78
	78

	52
	52

	17
	17
	17

	180
	180

	60
	60

	600
	600

	0.44
	0.44

	76
	76

	54
	54

	18
	18
	18

	160
	160

	40
	40

	900
	900

	0.44
	0.44

	76
	76

	55
	55

	19
	19
	19

	160
	160

	60
	60

	900
	900

	0.3
	0.3

	80
	80

	51
	51

	20
	20
	20

	160
	160

	80
	80

	600
	600

	0.3
	0.3

	81
	81

	50
	50

	21
	21
	21

	200
	200

	60
	60

	900
	900

	0.38
	0.38

	77
	77

	54
	54

	22
	22
	22

	160
	160

	40
	40

	900
	900

	0.38
	0.38

	78
	78

	54
	54

	23
	23
	23

	160
	160

	60
	60

	600
	600

	0.3
	0.3

	81
	81

	52
	52

	24
	24
	24

	180
	180

	40
	40

	900
	900

	0.44
	0.44

	77
	77

	56
	56

	25
	25
	25

	180
	180

	60
	60

	900
	900

	0.38
	0.38

	78
	78

	55
	55

	26
	26
	26

	200
	200

	60
	60

	600
	600

	0.3
	0.3

	83
	83

	50
	50

	27
	27
	27
	27
	27

	160
	160

	40
	40

	900
	900

	0.3
	0.3

	80
	80

	54
	54

	28
	28
	28

	180
	180

	40
	40

	900
	900

	0.38
	0.38

	79
	79

	55
	55

	29
	29
	29

	180
	180

	60
	60

	600
	600

	0.3
	0.3

	83
	83

	51
	51

	30
	30
	30

	200
	200

	40
	40

	600
	600

	0.3
	0.3

	83
	83

	52
	52

	31
	31
	31

	200
	200

	40
	40

	900
	900

	0.3
	0.3

	82
	82

	53
	53

	32
	32
	32

	200
	200

	40
	40

	900
	900

	0.38
	0.38

	79
	79

	56
	56

	33
	33
	33

	200
	200

	60
	60

	600
	600

	0.44
	0.44

	78
	78

	58
	58

	34
	34
	34

	200
	200

	80
	80

	600
	600

	0.3
	0.3

	84
	84

	52
	52

	35
	35
	35

	160
	160

	40
	40

	1800
	1800

	0.38
	0.38

	79
	79

	58
	58

	36
	36
	36

	180
	180

	40
	40

	900
	900

	0.3
	0.3

	82
	82

	55
	55

	37
	37
	37

	180
	180

	40
	40

	1800
	1800

	0.38
	0.38

	79
	79

	58
	58

	38
	38
	38

	180
	180

	60
	60

	900
	900

	0.44
	0.44

	78
	78

	59
	59

	39
	39
	39

	180
	180

	80
	80

	600
	600

	0.3
	0.3

	84
	84

	53
	53

	40
	40
	40

	200
	200

	40
	40

	1800
	1800

	0.38
	0.38

	80
	80

	58
	58

	41
	41
	41

	160
	160

	60
	60

	900
	900

	0.38
	0.38

	81
	81

	58
	58

	42
	42
	42

	180
	180

	80
	80

	600
	600

	0.38
	0.38

	82
	82

	57
	57

	43
	43
	43

	200
	200

	60
	60

	900
	900

	0.3
	0.3

	84
	84

	55
	55

	44
	44
	44

	180
	180

	80
	80

	900
	900

	0.3
	0.3

	84
	84

	56
	56

	45
	45
	45

	200
	200

	40
	40

	900
	900

	0.44
	0.44

	78
	78

	62
	62

	46
	46
	46

	160
	160

	40
	40

	1800
	1800

	0.3
	0.3

	83
	83

	59
	59

	47
	47
	47

	160
	160

	80
	80

	600
	600

	0.44
	0.44

	81
	81

	62
	62

	48
	48
	48

	200
	200

	80
	80

	600
	600

	0.38
	0.38

	83
	83

	60
	60

	49
	49
	49

	180
	180

	80
	80

	600
	600

	0.44
	0.44

	81
	81

	63
	63

	50
	50
	50

	180
	180

	60
	60

	900
	900

	0.3
	0.3

	85
	85

	60
	60

	51
	51
	51

	200
	200

	80
	80

	600
	600

	0.44
	0.44

	81
	81

	64
	64

	52
	52
	52

	160
	160

	80
	80

	900
	900

	0.3
	0.3

	85
	85

	61
	61

	53
	53
	53

	180
	180

	40
	40

	1800
	1800

	0.3
	0.3

	84
	84

	62
	62

	54
	54
	54

	160
	160

	60
	60

	1800
	1800

	0.3
	0.3

	85
	85

	62
	62

	55
	55
	55

	200
	200

	60
	60

	900
	900

	0.44
	0.44

	81
	81

	66
	66

	56
	56
	56

	200
	200

	60
	60

	1800
	1800

	0.3
	0.3

	86
	86

	63
	63

	57
	57
	57

	200
	200

	80
	80

	900
	900

	0.3
	0.3

	87
	87

	62
	62

	58
	58
	58

	180
	180

	60
	60

	1800
	1800

	0.3
	0.3

	86
	86

	64
	64

	59
	59
	59

	200
	200

	60
	60

	1800
	1800

	0.38
	0.38

	84
	84

	68
	68

	60
	60
	60
	60
	60

	160
	160

	60
	60

	900
	900

	0.44
	0.44

	83
	83

	70
	70

	61
	61
	61

	200
	200

	80
	80

	900
	900

	0.38
	0.38

	85
	85

	69
	69

	62
	62
	62

	160
	160

	80
	80

	900
	900

	0.38
	0.38

	85
	85

	70
	70

	63
	63
	63

	200
	200

	40
	40

	1800
	1800

	0.3
	0.3

	88
	88

	67
	67

	64
	64
	64

	180
	180

	60
	60

	1800
	1800

	0.44
	0.44

	85
	85

	72
	72

	65
	65
	65

	160
	160

	60
	60

	1800
	1800

	0.44
	0.44

	85
	85

	73
	73

	66
	66
	66

	180
	180

	80
	80

	900
	900

	0.38
	0.38

	87
	87

	72
	72

	67
	67
	67

	160
	160

	60
	60

	1800
	1800

	0.38
	0.38

	87
	87

	74
	74

	68
	68
	68

	180
	180

	60
	60

	1800
	1800

	0.38
	0.38

	88
	88

	75
	75

	69
	69
	69

	200
	200

	60
	60

	1800
	1800

	0.44
	0.44

	87
	87

	76
	76

	70
	70
	70

	200
	200

	80
	80

	1800
	1800

	0.3
	0.3

	90
	90

	74
	74

	71
	71
	71

	160
	160

	80
	80

	900
	900

	0.44
	0.44

	89
	89

	80
	80

	72
	72
	72

	180
	180

	80
	80

	1800
	1800

	0.3
	0.3

	92
	92

	77
	77

	73
	73
	73

	200
	200

	80
	80

	900
	900

	0.44
	0.44

	90
	90

	81
	81

	74
	74
	74

	180
	180

	80
	80

	900
	900

	0.44
	0.44

	91
	91

	82
	82

	75
	75
	75

	160
	160

	80
	80

	1800
	1800

	0.3
	0.3

	94
	94

	81
	81

	76
	76
	76

	200
	200

	80
	80

	1800
	1800

	0.38
	0.38

	92
	92

	86
	86

	77
	77
	77

	160
	160

	80
	80

	1800
	1800

	0.38
	0.38

	94
	94

	88
	88

	78
	78
	78

	180
	180

	80
	80

	1800
	1800

	0.38
	0.38

	95
	95

	88
	88

	79
	79
	79

	180
	180

	80
	80

	1800
	1800

	0.44
	0.44

	94
	94

	90
	90

	80
	80
	80

	160
	160

	80
	80

	1800
	1800

	0.44
	0.44

	95
	95

	92
	92

	81
	81
	81

	200
	200

	80
	80

	1800
	1800

	0.44
	0.44

	97
	97

	94
	94

	
	
	
	

	Appendix 7:
	Appendix 7:
	Hyperparameter Tuning Results: DQN in Corridor
	Network with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	-batch
	-batch

	Discount Factor
	Discount Factor

	Green Duration
	Green Duration

	Learning Rate
	Learning Rate

	-lre
	-lre

	Number of Hidden Layers
	Number of Hidden Layers

	-nreplay
	-nreplay

	Temporal Difference Steps
	Temporal Difference Steps

	Update Frequency
	Update Frequency

	-updates
	-updates

	Mean
	Mean
	(seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	128
	128

	0.1
	0.1

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	68
	68

	55
	55

	2
	2
	2

	128
	128

	0.1
	0.1

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	67
	67

	86
	86

	3
	3
	3

	128
	128

	0.5
	0.5

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	66
	66

	90
	90

	4
	4
	4

	128
	128

	0.9
	0.9

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	73
	73

	90
	90

	5
	5
	5

	128
	128

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	77
	77

	96
	96

	6
	6
	6

	128
	128

	0.7
	0.7

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	70
	70

	107
	107

	7
	7
	7

	128
	128

	0.1
	0.1

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	71
	71

	111
	111

	8
	8
	8

	128
	128

	0.7
	0.7

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	72
	72

	116
	116

	9
	9
	9

	128
	128

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	72
	72

	117
	117

	10
	10
	10

	128
	128

	0.9
	0.9

	6
	6

	0.001
	0.001

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	80
	80

	118
	118

	11
	11
	11

	128
	128

	0.5
	0.5

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	76
	76

	129
	129

	12
	12
	12

	128
	128

	0.7
	0.7

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	800000
	800000

	2
	2

	128
	128

	5000
	5000

	79
	79

	139
	139

	
	
	Appendix 8:
	Appendix 8:
	Hyperparameter Tuning Results: M
	ax
	-
	press
	ure in
	Corridor Network with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	Green Duration
	Green Duration

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	5
	5

	66
	66

	50
	50

	2
	2
	2

	23
	23

	72
	72

	73
	73

	3
	3
	3

	18
	18

	71
	71

	87
	87

	4
	4
	4

	17
	17

	73
	73

	93
	93

	5
	5
	5

	9
	9

	76
	76

	93
	93

	6
	6
	6

	22
	22

	74
	74

	97
	97

	7
	7
	7

	21
	21

	75
	75

	97
	97

	8
	8
	8

	11
	11

	76
	76

	102
	102

	9
	9
	9

	19
	19

	78
	78

	108
	108

	10
	10
	10

	14
	14

	78
	78

	112
	112

	11
	11
	11

	20
	20

	80
	80

	110
	110

	12
	12
	12

	16
	16

	77
	77

	116
	116

	13
	13
	13

	7
	7

	78
	78

	117
	117

	14
	14
	14

	15
	15

	79
	79

	116
	116

	15
	15
	15

	12
	12

	80
	80

	116
	116

	16
	16
	16

	13
	13

	81
	81

	118
	118

	17
	17
	17

	25
	25

	82
	82

	118
	118

	18
	18
	18

	10
	10

	82
	82

	122
	122

	19
	19
	19

	8
	8

	81
	81

	126
	126

	20
	20
	20

	6
	6

	82
	82

	135
	135

	21
	21
	21

	24
	24

	85
	85

	135
	135

	
	
	Appendix 9: Hyperparameter Tuning Results: Uniform
	Appendix 9: Hyperparameter Tuning Results: Uniform
	
	in Corridor
	Network with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	Green Duration (seconds)
	Green Duration (seconds)

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	14
	14

	91
	91

	92
	92

	2
	2
	2

	24
	24

	99
	99

	84
	84

	3
	3
	3

	17
	17

	98
	98

	106
	106

	4
	4
	4

	5
	5

	109
	109

	96
	96

	5
	5
	5

	16
	16

	96
	96

	110
	110

	6
	6
	6

	13
	13

	98
	98

	124
	124

	7
	7
	7

	18
	18

	103
	103

	120
	120

	8
	8
	8

	9
	9

	99
	99

	125
	125

	9
	9
	9

	11
	11

	98
	98

	127
	127

	10
	10
	10

	23
	23

	106
	106

	119
	119

	11
	11
	11

	10
	10

	99
	99

	127
	127

	12
	12
	12

	15
	15

	104
	104

	134
	134

	13
	13
	13

	20
	20

	107
	107

	134
	134

	14
	14
	14

	22
	22

	112
	112

	146
	146

	15
	15
	15

	25
	25

	115
	115

	143
	143

	16
	16
	16

	12
	12

	105
	105

	154
	154

	17
	17
	17

	19
	19

	112
	112

	152
	152

	18
	18
	18

	7
	7

	113
	113

	157
	157

	19
	19
	19

	8
	8

	112
	112

	158
	158

	20
	20
	20

	21
	21

	116
	116

	159
	159

	21
	21
	21

	6
	6

	125
	125

	161
	161

	
	
	Appendix 10: Hyperparameter Tuning Results: Web
	Appendix 10: Hyperparameter Tuning Results: Web
	ster’s
	
	in
	Corridor Network with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	Max Cycle Length (seconds)
	Max Cycle Length (seconds)

	Min Cycle Length (seconds)
	Min Cycle Length (seconds)

	Time Interval (seconds)
	Time Interval (seconds)

	Satuation Flow Rate
	Satuation Flow Rate

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	180
	180

	40
	40

	1800
	1800

	0.44
	0.44

	77
	77

	71
	71

	2
	2
	2

	160
	160

	40
	40

	600
	600

	0.3
	0.3

	87
	87

	66
	66

	3
	3
	3

	160
	160

	40
	40

	600
	600

	0.38
	0.38

	78
	78

	83
	83

	4
	4
	4

	180
	180

	40
	40

	600
	600

	0.38
	0.38

	81
	81

	88
	88

	5
	5
	5

	180
	180

	80
	80

	1800
	1800

	0.3
	0.3

	83
	83

	87
	87

	6
	6
	6

	160
	160

	60
	60

	600
	600

	0.38
	0.38

	83
	83

	91
	91

	7
	7
	7

	180
	180

	80
	80

	900
	900

	0.3
	0.3

	85
	85

	94
	94

	8
	8
	8

	200
	200

	40
	40

	900
	900

	0.3
	0.3

	81
	81

	100
	100

	9
	9
	9

	180
	180

	60
	60

	900
	900

	0.3
	0.3

	82
	82

	100
	100

	10
	10
	10

	200
	200

	60
	60

	900
	900

	0.38
	0.38

	82
	82

	101
	101

	11
	11
	11

	160
	160

	60
	60

	1800
	1800

	0.3
	0.3

	85
	85

	101
	101

	12
	12
	12

	180
	180

	40
	40

	900
	900

	0.38
	0.38

	83
	83

	103
	103

	13
	13
	13

	160
	160

	80
	80

	1800
	1800

	0.38
	0.38

	86
	86

	102
	102

	14
	14
	14

	160
	160

	60
	60

	1800
	1800

	0.38
	0.38

	84
	84

	105
	105

	15
	15
	15

	180
	180

	80
	80

	900
	900

	0.38
	0.38

	87
	87

	103
	103

	16
	16
	16

	200
	200

	40
	40

	900
	900

	0.38
	0.38

	83
	83

	107
	107

	17
	17
	17

	200
	200

	80
	80

	1800
	1800

	0.3
	0.3

	86
	86

	104
	104

	18
	18
	18

	200
	200

	80
	80

	1800
	1800

	0.44
	0.44

	87
	87

	103
	103

	19
	19
	19

	200
	200

	80
	80

	1800
	1800

	0.38
	0.38

	86
	86

	105
	105

	20
	20
	20

	160
	160

	60
	60

	900
	900

	0.3
	0.3

	86
	86

	107
	107

	21
	21
	21

	200
	200

	60
	60

	600
	600

	0.3
	0.3

	86
	86

	107
	107

	22
	22
	22

	200
	200

	40
	40

	600
	600

	0.3
	0.3

	88
	88

	106
	106

	23
	23
	23

	200
	200

	60
	60

	1800
	1800

	0.3
	0.3

	88
	88

	110
	110

	24
	24
	24

	180
	180

	40
	40

	1800
	1800

	0.3
	0.3

	86
	86

	113
	113

	25
	25
	25

	200
	200

	60
	60

	900
	900

	0.44
	0.44

	86
	86

	115
	115

	26
	26
	26

	200
	200

	80
	80

	900
	900

	0.44
	0.44

	87
	87

	114
	114

	27
	27
	27

	160
	160

	60
	60

	600
	600

	0.3
	0.3

	88
	88

	114
	114

	28
	28
	28

	180
	180

	60
	60

	1800
	1800

	0.44
	0.44

	86
	86

	116
	116

	29
	29
	29
	29
	29

	200
	200

	60
	60

	600
	600

	0.44
	0.44

	86
	86

	116
	116

	30
	30
	30

	160
	160

	40
	40

	1800
	1800

	0.38
	0.38

	86
	86

	117
	117

	31
	31
	31

	160
	160

	80
	80

	1800
	1800

	0.44
	0.44

	89
	89

	114
	114

	32
	32
	32

	180
	180

	80
	80

	900
	900

	0.44
	0.44

	88
	88

	115
	115

	33
	33
	33

	160
	160

	80
	80

	900
	900

	0.3
	0.3

	91
	91

	114
	114

	34
	34
	34

	180
	180

	60
	60

	600
	600

	0.38
	0.38

	89
	89

	116
	116

	35
	35
	35

	180
	180

	60
	60

	1800
	1800

	0.3
	0.3

	87
	87

	119
	119

	36
	36
	36

	180
	180

	40
	40

	900
	900

	0.44
	0.44

	88
	88

	120
	120

	37
	37
	37

	160
	160

	40
	40

	900
	900

	0.38
	0.38

	88
	88

	121
	121

	38
	38
	38

	180
	180

	80
	80

	600
	600

	0.44
	0.44

	90
	90

	120
	120

	39
	39
	39

	200
	200

	60
	60

	1800
	1800

	0.38
	0.38

	87
	87

	123
	123

	40
	40
	40

	180
	180

	60
	60

	600
	600

	0.44
	0.44

	90
	90

	121
	121

	41
	41
	41

	200
	200

	80
	80

	600
	600

	0.44
	0.44

	89
	89

	122
	122

	42
	42
	42

	160
	160

	40
	40

	1800
	1800

	0.3
	0.3

	89
	89

	123
	123

	43
	43
	43

	160
	160

	40
	40

	900
	900

	0.44
	0.44

	89
	89

	124
	124

	44
	44
	44

	200
	200

	40
	40

	1800
	1800

	0.3
	0.3

	89
	89

	124
	124

	45
	45
	45

	160
	160

	40
	40

	1800
	1800

	0.44
	0.44

	88
	88

	126
	126

	46
	46
	46

	180
	180

	80
	80

	1800
	1800

	0.38
	0.38

	93
	93

	121
	121

	47
	47
	47

	160
	160

	60
	60

	900
	900

	0.38
	0.38

	89
	89

	126
	126

	48
	48
	48

	160
	160

	80
	80

	1800
	1800

	0.3
	0.3

	90
	90

	125
	125

	49
	49
	49

	200
	200

	60
	60

	600
	600

	0.38
	0.38

	90
	90

	125
	125

	50
	50
	50

	180
	180

	40
	40

	600
	600

	0.3
	0.3

	90
	90

	126
	126

	51
	51
	51

	180
	180

	60
	60

	600
	600

	0.3
	0.3

	90
	90

	126
	126

	52
	52
	52

	200
	200

	40
	40

	1800
	1800

	0.38
	0.38

	89
	89

	127
	127

	53
	53
	53

	200
	200

	60
	60

	900
	900

	0.3
	0.3

	90
	90

	126
	126

	54
	54
	54

	160
	160

	40
	40

	900
	900

	0.3
	0.3

	92
	92

	126
	126

	55
	55
	55

	200
	200

	80
	80

	600
	600

	0.38
	0.38

	91
	91

	127
	127

	56
	56
	56

	200
	200

	80
	80

	900
	900

	0.38
	0.38

	91
	91

	127
	127

	57
	57
	57

	160
	160

	60
	60

	900
	900

	0.44
	0.44

	91
	91

	129
	129

	58
	58
	58

	180
	180

	40
	40

	900
	900

	0.3
	0.3

	91
	91

	129
	129

	59
	59
	59

	200
	200

	40
	40

	600
	600

	0.38
	0.38

	89
	89

	131
	131

	60
	60
	60

	180
	180

	60
	60

	1800
	1800

	0.38
	0.38

	89
	89

	132
	132

	61
	61
	61

	160
	160

	60
	60

	1800
	1800

	0.44
	0.44

	89
	89

	133
	133

	62
	62
	62
	62
	62

	180
	180

	80
	80

	600
	600

	0.3
	0.3

	92
	92

	130
	130

	63
	63
	63

	160
	160

	60
	60

	600
	600

	0.44
	0.44

	91
	91

	132
	132

	64
	64
	64

	200
	200

	40
	40

	1800
	1800

	0.44
	0.44

	90
	90

	133
	133

	65
	65
	65

	180
	180

	60
	60

	900
	900

	0.38
	0.38

	91
	91

	133
	133

	66
	66
	66

	200
	200

	80
	80

	600
	600

	0.3
	0.3

	95
	95

	130
	130

	67
	67
	67

	160
	160

	80
	80

	900
	900

	0.38
	0.38

	93
	93

	133
	133

	68
	68
	68

	160
	160

	80
	80

	600
	600

	0.3
	0.3

	95
	95

	134
	134

	69
	69
	69

	200
	200

	40
	40

	600
	600

	0.44
	0.44

	91
	91

	138
	138

	70
	70
	70

	160
	160

	80
	80

	600
	600

	0.38
	0.38

	94
	94

	137
	137

	71
	71
	71

	180
	180

	80
	80

	1800
	1800

	0.44
	0.44

	94
	94

	140
	140

	72
	72
	72

	200
	200

	60
	60

	1800
	1800

	0.44
	0.44

	94
	94

	142
	142

	73
	73
	73

	160
	160

	80
	80

	900
	900

	0.44
	0.44

	96
	96

	142
	142

	74
	74
	74

	160
	160

	40
	40

	600
	600

	0.44
	0.44

	94
	94

	145
	145

	75
	75
	75

	160
	160

	80
	80

	600
	600

	0.44
	0.44

	97
	97

	142
	142

	76
	76
	76

	200
	200

	40
	40

	900
	900

	0.44
	0.44

	96
	96

	143
	143

	77
	77
	77

	200
	200

	80
	80

	900
	900

	0.3
	0.3

	100
	100

	145
	145

	78
	78
	78

	180
	180

	40
	40

	600
	600

	0.44
	0.44

	97
	97

	149
	149

	79
	79
	79

	180
	180

	80
	80

	600
	600

	0.38
	0.38

	100
	100

	149
	149

	80
	80
	80

	180
	180

	40
	40

	1800
	1800

	0.38
	0.38

	97
	97

	155
	155

	81
	81
	81

	180
	180

	60
	60

	900
	900

	0.44
	0.44

	100
	100

	158
	158

	
	
	Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid
	Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid
	with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	-batch
	-batch

	Discount Factor
	Discount Factor

	Green Duration
	Green Duration

	Learnig Rate
	Learnig Rate

	-lre
	-lre

	Number of Hidden Layers
	Number of Hidden Layers

	-nreplay
	-nreplay

	Temporal Difference Steps
	Temporal Difference Steps

	Update Frequency
	Update Frequency

	-updates
	-updates

	Mean
	Mean
	(seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	128
	128

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	99
	99

	169
	169

	2
	2
	2

	128
	128

	0.5
	0.5

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	107
	107

	203
	203

	3
	3
	3

	128
	128

	0.9
	0.9

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	118
	118

	231
	231

	4
	4
	4

	128
	128

	0.5
	0.5

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	114
	114

	238
	238

	5
	5
	5

	128
	128

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	138
	138

	216
	216

	6
	6
	6

	128
	128

	0.7
	0.7

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	116
	116

	251
	251

	7
	7
	7

	128
	128

	0.7
	0.7

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	131
	131

	290
	290

	8
	8
	8

	128
	128

	0.9
	0.9

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	148
	148

	283
	283

	9
	9
	9

	128
	128

	0.7
	0.7

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	148
	148

	307
	307

	
	
	Appendix 12: Hyperparameter Tuning Results: M
	Appendix 12: Hyperparameter Tuning Results: M
	ax
	-
	press
	ure in 2x2
	Grid
	
	Network with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	Green Duration
	Green Duration

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	24
	24

	97
	97

	101
	101

	2
	2
	2

	23
	23

	105
	105

	132
	132

	3
	3
	3

	6
	6

	104
	104

	135
	135

	4
	4
	4

	9
	9

	106
	106

	135
	135

	5
	5
	5

	16
	16

	109
	109

	144
	144

	6
	6
	6

	5
	5

	108
	108

	155
	155

	7
	7
	7

	17
	17

	111
	111

	152
	152

	8
	8
	8

	19
	19

	109
	109

	169
	169

	9
	9
	9

	15
	15

	110
	110

	169
	169

	10
	10
	10

	12
	12

	113
	113

	172
	172

	11
	11
	11

	8
	8

	118
	118

	193
	193

	12
	12
	12

	7
	7

	120
	120

	209
	209

	13
	13
	13

	11
	11

	125
	125

	220
	220

	14
	14
	14

	18
	18

	126
	126

	234
	234

	15
	15
	15

	25
	25

	129
	129

	231
	231

	16
	16
	16

	21
	21

	133
	133

	235
	235

	17
	17
	17

	14
	14

	130
	130

	240
	240

	18
	18
	18

	13
	13

	130
	130

	244
	244

	19
	19
	19

	20
	20

	140
	140

	283
	283

	20
	20
	20

	10
	10

	155
	155

	327
	327

	21
	21
	21

	22
	22

	155
	155

	336
	336

	
	
	Appendix 13: Hyperparameter Tuning Results: Uniform
	Appendix 13: Hyperparameter Tuning Results: Uniform
	
	in 2x2 Grid
	Network with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	Green Duration (seconds)
	Green Duration (seconds)

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	8
	8

	110
	110

	110
	110

	2
	2
	2

	23
	23

	129
	129

	116
	116

	3
	3
	3

	10
	10

	118
	118

	143
	143

	4
	4
	4

	16
	16

	129
	129

	137
	137

	5
	5
	5

	20
	20

	130
	130

	138
	138

	6
	6
	6

	13
	13

	127
	127

	146
	146

	7
	7
	7

	15
	15

	129
	129

	144
	144

	8
	8
	8

	12
	12

	125
	125

	152
	152

	9
	9
	9

	24
	24

	137
	137

	140
	140

	10
	10
	10

	18
	18

	133
	133

	145
	145

	11
	11
	11

	25
	25

	138
	138

	140
	140

	12
	12
	12

	19
	19

	133
	133

	146
	146

	13
	13
	13

	21
	21

	138
	138

	157
	157

	14
	14
	14

	14
	14

	139
	139

	180
	180

	15
	15
	15

	22
	22

	146
	146

	178
	178

	16
	16
	16

	9
	9

	137
	137

	199
	199

	17
	17
	17

	17
	17

	152
	152

	245
	245

	18
	18
	18

	7
	7

	141
	141

	271
	271

	19
	19
	19

	11
	11

	150
	150

	263
	263

	20
	20
	20

	5
	5

	158
	158

	272
	272

	21
	21
	21

	6
	6

	163
	163

	270
	270

	
	
	Appendix 14: Hyperparameter Tuning Results: Webster’s
	Appendix 14: Hyperparameter Tuning Results: Webster’s
	
	in 2x2
	Grid Network with 6,000 Traffic Demand and Incident
	

	ID
	ID
	ID
	ID
	ID

	Max Cycle Length (seconds)
	Max Cycle Length (seconds)

	Min Cycle Length (seconds)
	Min Cycle Length (seconds)

	Time Interval (seconds)
	Time Interval (seconds)

	Saturation Flow Rate
	Saturation Flow Rate

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	180
	180

	60
	60

	600
	600

	0.38
	0.38

	105
	105

	110
	110

	2
	2
	2

	200
	200

	80
	80

	600
	600

	0.38
	0.38

	109
	109

	111
	111

	3
	3
	3

	160
	160

	60
	60

	900
	900

	0.38
	0.38

	106
	106

	120
	120

	4
	4
	4

	160
	160

	40
	40

	1800
	1800

	0.3
	0.3

	106
	106

	125
	125

	5
	5
	5

	160
	160

	80
	80

	600
	600

	0.38
	0.38

	111
	111

	125
	125

	6
	6
	6

	180
	180

	80
	80

	600
	600

	0.44
	0.44

	111
	111

	126
	126

	7
	7
	7

	160
	160

	80
	80

	900
	900

	0.44
	0.44

	111
	111

	127
	127

	8
	8
	8

	180
	180

	80
	80

	1800
	1800

	0.3
	0.3

	110
	110

	129
	129

	9
	9
	9

	160
	160

	40
	40

	900
	900

	0.38
	0.38

	109
	109

	135
	135

	10
	10
	10

	200
	200

	80
	80

	900
	900

	0.44
	0.44

	114
	114

	131
	131

	11
	11
	11

	160
	160

	40
	40

	600
	600

	0.3
	0.3

	111
	111

	137
	137

	12
	12
	12

	180
	180

	40
	40

	900
	900

	0.44
	0.44

	110
	110

	139
	139

	13
	13
	13

	160
	160

	60
	60

	900
	900

	0.3
	0.3

	111
	111

	139
	139

	14
	14
	14

	200
	200

	80
	80

	1800
	1800

	0.44
	0.44

	113
	113

	137
	137

	15
	15
	15

	180
	180

	40
	40

	600
	600

	0.38
	0.38

	112
	112

	143
	143

	16
	16
	16

	160
	160

	40
	40

	600
	600

	0.44
	0.44

	113
	113

	143
	143

	17
	17
	17

	160
	160

	40
	40

	1800
	1800

	0.44
	0.44

	113
	113

	143
	143

	18
	18
	18

	180
	180

	80
	80

	900
	900

	0.44
	0.44

	118
	118

	142
	142

	19
	19
	19

	200
	200

	40
	40

	600
	600

	0.44
	0.44

	113
	113

	149
	149

	20
	20
	20

	200
	200

	80
	80

	600
	600

	0.44
	0.44

	114
	114

	151
	151

	21
	21
	21

	200
	200

	40
	40

	900
	900

	0.3
	0.3

	112
	112

	155
	155

	22
	22
	22

	160
	160

	60
	60

	1800
	1800

	0.44
	0.44

	111
	111

	158
	158

	23
	23
	23

	160
	160

	40
	40

	600
	600

	0.38
	0.38

	116
	116

	154
	154

	24
	24
	24

	180
	180

	40
	40

	600
	600

	0.3
	0.3

	119
	119

	160
	160

	25
	25
	25

	180
	180

	60
	60

	900
	900

	0.38
	0.38

	116
	116

	167
	167

	26
	26
	26

	200
	200

	60
	60

	600
	600

	0.38
	0.38

	116
	116

	169
	169

	27
	27
	27

	160
	160

	40
	40

	1800
	1800

	0.38
	0.38

	120
	120

	166
	166

	28
	28
	28

	200
	200

	80
	80

	1800
	1800

	0.38
	0.38

	118
	118

	168
	168

	29
	29
	29
	29
	29

	180
	180

	60
	60

	1800
	1800

	0.44
	0.44

	113
	113

	175
	175

	30
	30
	30

	160
	160

	60
	60

	1800
	1800

	0.3
	0.3

	122
	122

	168
	168

	31
	31
	31

	180
	180

	80
	80

	900
	900

	0.3
	0.3

	123
	123

	168
	168

	32
	32
	32

	160
	160

	40
	40

	900
	900

	0.3
	0.3

	119
	119

	180
	180

	33
	33
	33

	180
	180

	60
	60

	1800
	1800

	0.3
	0.3

	123
	123

	177
	177

	34
	34
	34

	180
	180

	60
	60

	1800
	1800

	0.38
	0.38

	119
	119

	181
	181

	35
	35
	35

	200
	200

	60
	60

	900
	900

	0.38
	0.38

	119
	119

	181
	181

	36
	36
	36

	180
	180

	60
	60

	600
	600

	0.44
	0.44

	119
	119

	184
	184

	37
	37
	37

	160
	160

	60
	60

	900
	900

	0.44
	0.44

	118
	118

	187
	187

	38
	38
	38

	160
	160

	40
	40

	900
	900

	0.44
	0.44

	119
	119

	187
	187

	39
	39
	39

	180
	180

	80
	80

	600
	600

	0.3
	0.3

	128
	128

	179
	179

	40
	40
	40

	200
	200

	80
	80

	600
	600

	0.3
	0.3

	125
	125

	182
	182

	41
	41
	41

	180
	180

	40
	40

	900
	900

	0.38
	0.38

	120
	120

	188
	188

	42
	42
	42

	180
	180

	40
	40

	1800
	1800

	0.3
	0.3

	120
	120

	191
	191

	43
	43
	43

	200
	200

	60
	60

	1800
	1800

	0.44
	0.44

	124
	124

	192
	192

	44
	44
	44

	160
	160

	80
	80

	900
	900

	0.38
	0.38

	126
	126

	192
	192

	45
	45
	45

	200
	200

	60
	60

	1800
	1800

	0.3
	0.3

	124
	124

	196
	196

	46
	46
	46

	160
	160

	60
	60

	600
	600

	0.3
	0.3

	125
	125

	196
	196

	47
	47
	47

	200
	200

	60
	60

	1800
	1800

	0.38
	0.38

	125
	125

	197
	197

	48
	48
	48

	180
	180

	80
	80

	600
	600

	0.38
	0.38

	124
	124

	201
	201

	49
	49
	49

	200
	200

	40
	40

	600
	600

	0.3
	0.3

	122
	122

	204
	204

	50
	50
	50

	200
	200

	60
	60

	600
	600

	0.3
	0.3

	126
	126

	203
	203

	51
	51
	51

	180
	180

	40
	40

	600
	600

	0.44
	0.44

	128
	128

	204
	204

	52
	52
	52

	160
	160

	60
	60

	600
	600

	0.44
	0.44

	123
	123

	210
	210

	53
	53
	53

	180
	180

	80
	80

	1800
	1800

	0.44
	0.44

	127
	127

	207
	207

	54
	54
	54

	180
	180

	40
	40

	900
	900

	0.3
	0.3

	131
	131

	207
	207

	55
	55
	55

	200
	200

	80
	80

	1800
	1800

	0.3
	0.3

	127
	127

	211
	211

	56
	56
	56

	180
	180

	60
	60

	900
	900

	0.44
	0.44

	127
	127

	212
	212

	57
	57
	57

	180
	180

	60
	60

	900
	900

	0.3
	0.3

	133
	133

	213
	213

	58
	58
	58

	200
	200

	60
	60

	600
	600

	0.44
	0.44

	130
	130

	216
	216

	59
	59
	59

	160
	160

	60
	60

	1800
	1800

	0.38
	0.38

	128
	128

	220
	220

	60
	60
	60

	160
	160

	80
	80

	600
	600

	0.3
	0.3

	129
	129

	221
	221

	61
	61
	61

	200
	200

	60
	60

	900
	900

	0.3
	0.3

	130
	130

	221
	221

	62
	62
	62
	62
	62

	200
	200

	60
	60

	900
	900

	0.44
	0.44

	135
	135

	219
	219

	63
	63
	63

	200
	200

	80
	80

	900
	900

	0.3
	0.3

	130
	130

	225
	225

	64
	64
	64

	180
	180

	40
	40

	1800
	1800

	0.38
	0.38

	129
	129

	231
	231

	65
	65
	65

	180
	180

	80
	80

	900
	900

	0.38
	0.38

	135
	135

	226
	226

	66
	66
	66

	180
	180

	60
	60

	600
	600

	0.3
	0.3

	133
	133

	234
	234

	67
	67
	67

	160
	160

	80
	80

	1800
	1800

	0.44
	0.44

	136
	136

	234
	234

	68
	68
	68

	160
	160

	80
	80

	900
	900

	0.3
	0.3

	136
	136

	238
	238

	69
	69
	69

	200
	200

	40
	40

	600
	600

	0.38
	0.38

	136
	136

	242
	242

	70
	70
	70

	160
	160

	80
	80

	600
	600

	0.44
	0.44

	142
	142

	239
	239

	71
	71
	71

	180
	180

	40
	40

	1800
	1800

	0.44
	0.44

	139
	139

	248
	248

	72
	72
	72

	200
	200

	40
	40

	900
	900

	0.44
	0.44

	138
	138

	253
	253

	73
	73
	73

	200
	200

	40
	40

	1800
	1800

	0.44
	0.44

	140
	140

	252
	252

	74
	74
	74

	200
	200

	40
	40

	900
	900

	0.38
	0.38

	139
	139

	257
	257

	75
	75
	75

	200
	200

	40
	40

	1800
	1800

	0.38
	0.38

	141
	141

	256
	256

	76
	76
	76

	160
	160

	80
	80

	1800
	1800

	0.38
	0.38

	150
	150

	255
	255

	77
	77
	77

	200
	200

	80
	80

	900
	900

	0.38
	0.38

	144
	144

	281
	281

	78
	78
	78

	200
	200

	40
	40

	1800
	1800

	0.3
	0.3

	149
	149

	277
	277

	79
	79
	79

	180
	180

	80
	80

	1800
	1800

	0.38
	0.38

	151
	151

	279
	279

	80
	80
	80

	160
	160

	80
	80

	1800
	1800

	0.3
	0.3

	153
	153

	290
	290

	81
	81
	81

	160
	160

	60
	60

	600
	600

	0.38
	0.38

	151
	151

	300
	300

	
	
	Appendix 15:
	Appendix 15:
	Hyperparameter Tuning Results For
	DQN
	
	i
	n 2x2 Grid
	Network
	w
	ith 6
	,
	000 Traffic Demand
	a
	nd No Incident
	

	ID
	ID
	ID
	ID
	ID

	-batch
	-batch

	Discount Factor
	Discount Factor

	Green Duration
	Green Duration

	Learning Rate
	Learning Rate

	-lre
	-lre

	Number of Hidden Layers
	Number of Hidden Layers

	-nreplay
	-nreplay

	Temporal Difference Steps
	Temporal Difference Steps

	Update Frequency
	Update Frequency

	-updates
	-updates

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	128
	128

	0.5
	0.5

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	68
	68

	30
	30

	2
	2
	2

	128
	128

	0.5
	0.5

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	69
	69

	30
	30

	3
	3
	3

	128
	128

	0.7
	0.7

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	69
	69

	30
	30

	4
	4
	4

	128
	128

	0.5
	0.5

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	70
	70

	31
	31

	5
	5
	5

	128
	128

	0.7
	0.7

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	70
	70

	31
	31

	6
	6
	6

	128
	128

	0.7
	0.7

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	71
	71

	32
	32

	7
	7
	7

	128
	128

	0.9
	0.9

	6
	6

	1.00E-04
	1.00E-04

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	71
	71

	32
	32

	8
	8
	8

	128
	128

	0.9
	0.9

	6
	6

	1.00E-03
	1.00E-03

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	81
	81

	42
	42

	9
	9
	9

	128
	128

	0.9
	0.9

	6
	6

	1.00E-05
	1.00E-05

	1.00E-07
	1.00E-07

	6
	6

	1600000
	1600000

	2
	2

	128
	128

	5000
	5000

	89
	89

	53
	53

	
	
	Appendix 16:
	Appendix 16:
	Hyperparameter Tuning Results For
	M
	ax
	-
	press
	ure
	
	i
	n
	2x2 Grid Network with 6,000 Traffic Demand and No Incident
	

	ID
	ID
	ID
	ID
	ID

	Green Duration
	Green Duration

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	5
	5

	80
	80

	36
	36

	2
	2
	2

	6
	6

	81
	81

	37
	37

	3
	3
	3

	7
	7

	81
	81

	37
	37

	4
	4
	4

	8
	8

	83
	83

	38
	38

	5
	5
	5

	9
	9

	85
	85

	39
	39

	6
	6
	6

	17
	17

	84
	84

	40
	40

	7
	7
	7

	20
	20

	84
	84

	40
	40

	8
	8
	8

	16
	16

	85
	85

	41
	41

	9
	9
	9

	18
	18

	85
	85

	41
	41

	10
	10
	10

	19
	19

	85
	85

	41
	41

	11
	11
	11

	21
	21

	85
	85

	41
	41

	12
	12
	12

	23
	23

	85
	85

	41
	41

	13
	13
	13

	10
	10

	86
	86

	41
	41

	14
	14
	14

	11
	11

	86
	86

	41
	41

	15
	15
	15

	22
	22

	85
	85

	42
	42

	16
	16
	16

	24
	24

	85
	85

	42
	42

	17
	17
	17

	25
	25

	85
	85

	42
	42

	18
	18
	18

	12
	12

	86
	86

	42
	42

	19
	19
	19

	14
	14

	86
	86

	42
	42

	20
	20
	20

	15
	15

	86
	86

	42
	42

	21
	21
	21

	13
	13

	87
	87

	42
	42

	
	
	Appendix 17:
	Appendix 17:
	Hyperparameter Tuning Results For
	Uniform
	
	i
	n 2x2
	Grid Network
	with 6,000 Traffic Demand and No Incident
	

	ID
	ID
	ID
	ID
	ID

	Green Duration (seconds)
	Green Duration (seconds)

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	7
	7

	90
	90

	40
	40

	2
	2
	2

	9
	9

	91
	91

	41
	41

	3
	3
	3

	10
	10

	93
	93

	41
	41

	4
	4
	4

	8
	8

	93
	93

	42
	42

	5
	5
	5

	11
	11

	96
	96

	44
	44

	6
	6
	6

	12
	12

	97
	97

	45
	45

	7
	7
	7

	6
	6

	96
	96

	48
	48

	8
	8
	8

	13
	13

	100
	100

	47
	47

	9
	9
	9

	14
	14

	103
	103

	49
	49

	10
	10
	10

	5
	5

	103
	103

	52
	52

	11
	11
	11

	15
	15

	105
	105

	51
	51

	12
	12
	12

	16
	16

	107
	107

	53
	53

	13
	13
	13

	17
	17

	108
	108

	54
	54

	14
	14
	14

	18
	18

	109
	109

	55
	55

	15
	15
	15

	19
	19

	109
	109

	55
	55

	16
	16
	16

	20
	20

	110
	110

	57
	57

	17
	17
	17

	21
	21

	112
	112

	58
	58

	18
	18
	18

	22
	22

	113
	113

	59
	59

	19
	19
	19

	23
	23

	114
	114

	60
	60

	20
	20
	20

	24
	24

	115
	115

	62
	62

	21
	21
	21

	25
	25

	117
	117

	63
	63

	
	
	Appendix 18:
	Appendix 18:
	Hyperparameter Tuning Results For
	Websters
	
	i
	n 2x2
	Grid Network with 6,000 Traffic Demand and No Incident
	

	ID
	ID
	ID
	ID
	ID

	Max Cycle Length (seconds)
	Max Cycle Length (seconds)

	Min Cycle Length (seconds)
	Min Cycle Length (seconds)

	Time Interval (seconds)
	Time Interval (seconds)

	Satuation Flow Rate
	Satuation Flow Rate

	Mean (seconds)
	Mean (seconds)

	Standard Deviation (seconds)
	Standard Deviation (seconds)

	1
	1
	1
	1

	180
	180

	40
	40

	1800
	1800

	0.38
	0.38

	87
	87

	39
	39

	2
	2
	2

	180
	180

	40
	40

	1800
	1800

	0.44
	0.44

	87
	87

	39
	39

	3
	3
	3

	160
	160

	40
	40

	600
	600

	0.38
	0.38

	87
	87

	40
	40

	4
	4
	4

	160
	160

	40
	40

	600
	600

	0.44
	0.44

	87
	87

	40
	40

	5
	5
	5

	160
	160

	40
	40

	900
	900

	0.38
	0.38

	87
	87

	40
	40

	6
	6
	6

	180
	180

	40
	40

	600
	600

	0.44
	0.44

	87
	87

	40
	40

	7
	7
	7

	180
	180

	40
	40

	900
	900

	0.38
	0.38

	87
	87

	40
	40

	8
	8
	8

	180
	180

	40
	40

	900
	900

	0.44
	0.44

	87
	87

	40
	40

	9
	9
	9

	180
	180

	40
	40

	1800
	1800

	0.3
	0.3

	87
	87

	40
	40

	10
	10
	10

	200
	200

	40
	40

	600
	600

	0.38
	0.38

	87
	87

	40
	40

	11
	11
	11

	200
	200

	40
	40

	900
	900

	0.44
	0.44

	87
	87

	40
	40

	12
	12
	12

	200
	200

	40
	40

	1800
	1800

	0.38
	0.38

	87
	87

	40
	40

	13
	13
	13

	200
	200

	40
	40

	1800
	1800

	0.44
	0.44

	87
	87

	40
	40

	14
	14
	14

	160
	160

	40
	40

	1800
	1800

	0.3
	0.3

	88
	88

	40
	40

	15
	15
	15

	160
	160

	40
	40

	1800
	1800

	0.38
	0.38

	88
	88

	40
	40

	16
	16
	16

	160
	160

	40
	40

	1800
	1800

	0.44
	0.44

	88
	88

	40
	40

	17
	17
	17

	200
	200

	40
	40

	1800
	1800

	0.3
	0.3

	88
	88

	40
	40

	18
	18
	18

	160
	160

	40
	40

	900
	900

	0.3
	0.3

	88
	88

	41
	41

	19
	19
	19

	160
	160

	40
	40

	900
	900

	0.44
	0.44

	88
	88

	41
	41

	20
	20
	20

	160
	160

	60
	60

	1800
	1800

	0.44
	0.44

	88
	88

	41
	41

	21
	21
	21

	180
	180

	40
	40

	600
	600

	0.3
	0.3

	88
	88

	41
	41

	22
	22
	22

	180
	180

	40
	40

	600
	600

	0.38
	0.38

	88
	88

	41
	41

	23
	23
	23

	180
	180

	40
	40

	900
	900

	0.3
	0.3

	88
	88

	41
	41

	24
	24
	24

	200
	200

	40
	40

	600
	600

	0.3
	0.3

	88
	88

	41
	41

	25
	25
	25

	200
	200

	40
	40

	600
	600

	0.44
	0.44

	88
	88

	41
	41

	26
	26
	26

	200
	200

	40
	40

	900
	900

	0.3
	0.3

	88
	88

	41
	41

	27
	27
	27

	200
	200

	40
	40

	900
	900

	0.38
	0.38

	88
	88

	41
	41

	28
	28
	28

	200
	200

	60
	60

	900
	900

	0.38
	0.38

	89
	89

	41
	41

	29
	29
	29
	29
	29

	200
	200

	60
	60

	1800
	1800

	0.3
	0.3

	88
	88

	42
	42

	30
	30
	30

	200
	200

	60
	60

	1800
	1800

	0.44
	0.44

	88
	88

	42
	42

	31
	31
	31

	160
	160

	40
	40

	600
	600

	0.3
	0.3

	89
	89

	42
	42

	32
	32
	32

	160
	160

	60
	60

	600
	600

	0.38
	0.38

	89
	89

	42
	42

	33
	33
	33

	160
	160

	60
	60

	600
	600

	0.44
	0.44

	89
	89

	42
	42

	34
	34
	34

	160
	160

	60
	60

	900
	900

	0.44
	0.44

	89
	89

	42
	42

	35
	35
	35

	160
	160

	60
	60

	1800
	1800

	0.3
	0.3

	89
	89

	42
	42

	36
	36
	36

	180
	180

	60
	60

	600
	600

	0.38
	0.38

	89
	89

	42
	42

	37
	37
	37

	180
	180

	60
	60

	600
	600

	0.44
	0.44

	89
	89

	42
	42

	38
	38
	38

	180
	180

	60
	60

	900
	900

	0.3
	0.3

	89
	89

	42
	42

	39
	39
	39

	180
	180

	60
	60

	900
	900

	0.44
	0.44

	89
	89

	42
	42

	40
	40
	40

	180
	180

	60
	60

	1800
	1800

	0.3
	0.3

	89
	89

	42
	42

	41
	41
	41

	180
	180

	60
	60

	1800
	1800

	0.38
	0.38

	89
	89

	42
	42

	42
	42
	42

	180
	180

	60
	60

	1800
	1800

	0.44
	0.44

	89
	89

	42
	42

	43
	43
	43

	200
	200

	60
	60

	600
	600

	0.38
	0.38

	89
	89

	42
	42

	44
	44
	44

	200
	200

	60
	60

	900
	900

	0.3
	0.3

	89
	89

	42
	42

	45
	45
	45

	200
	200

	60
	60

	1800
	1800

	0.38
	0.38

	89
	89

	42
	42

	46
	46
	46

	160
	160

	60
	60

	900
	900

	0.3
	0.3

	89
	89

	43
	43

	47
	47
	47

	160
	160

	60
	60

	900
	900

	0.38
	0.38

	89
	89

	43
	43

	48
	48
	48

	160
	160

	60
	60

	1800
	1800

	0.38
	0.38

	89
	89

	43
	43

	49
	49
	49

	180
	180

	60
	60

	900
	900

	0.38
	0.38

	89
	89

	43
	43

	50
	50
	50

	200
	200

	60
	60

	600
	600

	0.3
	0.3

	89
	89

	43
	43

	51
	51
	51

	200
	200

	60
	60

	900
	900

	0.44
	0.44

	89
	89

	43
	43

	52
	52
	52

	160
	160

	60
	60

	600
	600

	0.3
	0.3

	90
	90

	43
	43

	53
	53
	53

	180
	180

	60
	60

	600
	600

	0.3
	0.3

	90
	90

	43
	43

	54
	54
	54

	200
	200

	60
	60

	600
	600

	0.44
	0.44

	90
	90

	43
	43

	55
	55
	55

	160
	160

	80
	80

	600
	600

	0.3
	0.3

	93
	93

	46
	46

	56
	56
	56

	160
	160

	80
	80

	900
	900

	0.3
	0.3

	93
	93

	46
	46

	57
	57
	57

	160
	160

	80
	80

	1800
	1800

	0.3
	0.3

	93
	93

	46
	46

	58
	58
	58

	160
	160

	80
	80

	1800
	1800

	0.38
	0.38

	93
	93

	46
	46

	59
	59
	59

	160
	160

	80
	80

	1800
	1800

	0.44
	0.44

	93
	93

	46
	46

	60
	60
	60

	180
	180

	80
	80

	600
	600

	0.3
	0.3

	93
	93

	46
	46

	61
	61
	61

	180
	180

	80
	80

	1800
	1800

	0.3
	0.3

	93
	93

	46
	46

	62
	62
	62
	62
	62

	180
	180

	80
	80

	1800
	1800

	0.38
	0.38

	93
	93

	46
	46

	63
	63
	63

	180
	180

	80
	80

	1800
	1800

	0.44
	0.44

	93
	93

	46
	46

	64
	64
	64

	200
	200

	80
	80

	900
	900

	0.38
	0.38

	93
	93

	46
	46

	65
	65
	65

	200
	200

	80
	80

	900
	900

	0.44
	0.44

	93
	93

	46
	46

	66
	66
	66

	200
	200

	80
	80

	1800
	1800

	0.3
	0.3

	93
	93

	46
	46

	67
	67
	67

	200
	200

	80
	80

	1800
	1800

	0.38
	0.38

	93
	93

	46
	46

	68
	68
	68

	200
	200

	80
	80

	1800
	1800

	0.44
	0.44

	93
	93

	46
	46

	69
	69
	69

	180
	180

	80
	80

	900
	900

	0.38
	0.38

	93
	93

	47
	47

	70
	70
	70

	160
	160

	80
	80

	600
	600

	0.38
	0.38

	94
	94

	47
	47

	71
	71
	71

	160
	160

	80
	80

	600
	600

	0.44
	0.44

	94
	94

	47
	47

	72
	72
	72

	160
	160

	80
	80

	900
	900

	0.38
	0.38

	94
	94

	47
	47

	73
	73
	73

	160
	160

	80
	80

	900
	900

	0.44
	0.44

	94
	94

	47
	47

	74
	74
	74

	180
	180

	80
	80

	600
	600

	0.38
	0.38

	94
	94

	47
	47

	75
	75
	75

	180
	180

	80
	80

	600
	600

	0.44
	0.44

	94
	94

	47
	47

	76
	76
	76

	180
	180

	80
	80

	900
	900

	0.3
	0.3

	94
	94

	47
	47

	77
	77
	77

	180
	180

	80
	80

	900
	900

	0.44
	0.44

	94
	94

	47
	47

	78
	78
	78

	200
	200

	80
	80

	600
	600

	0.3
	0.3

	94
	94

	47
	47

	79
	79
	79

	200
	200

	80
	80

	600
	600

	0.38
	0.38

	94
	94

	47
	47

	80
	80
	80

	200
	200

	80
	80

	600
	600

	0.44
	0.44

	94
	94

	47
	47

	81
	81
	81

	200
	200

	80
	80

	900
	900

	0.3
	0.3

	94
	94

	47
	47

	

Accessibility Report

		Filename:

		CAMMSE-UNCC-2022-Final.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 27

		Failed: 2

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

