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EXECUTIVE SUMMARY 

Traffic signal control is a crucial element of urban mobility that profoundly influences 

transportation network efficiency and safety. Traditional traffic signal control systems rely on 

fixed-time or actuated signal timings, often failing to adapt to dynamic traffic demands and 

congestion patterns. This technical report explores the application of Reinforcement Learning 

(RL) algorithms to traffic signal control, aiming to enhance traffic flow efficiency and alleviate 

congestion. 

The research develops a simulation model of a signalized intersection and trains RL 

agents to dynamically adjust signal timings based on real-time traffic conditions. These RL 

agents are designed to learn from experience, adapt to changing traffic patterns, and optimize 

traffic flow, even in scenarios with unexpected traffic incidents. 

The study examines the benefits of RL algorithms in optimizing traffic signal control, 

both in scenarios with and without traffic incidents. To achieve this, an incident generation 

module is integrated into an open-source traffic signal performance simulation framework that 

relies on the Simulation of Urban MObility SUMO software. This module introduces the 

presence of emergency response vehicles and randomly generates traffic incidents within the 

network. By exposing RL agents to this environment, they can learn and fine-tune traffic signal 

control to minimize system delay. 

Initially, the research focuses on a single intersection scenario, employing the DQN 

algorithm to form the RL agent traffic signal controller. The training process is enhanced through 

the utilization of experience replay and target network techniques, addressing the limitations of 

the DQN algorithm. Hyperparameter tuning identifies the optimal parameter combination for 

training, with results showcasing the superiority of DQN over other controllers in terms of 

system-wide and intersection-specific queue distribution and vehicle delay. 

The study is subsequently extended to encompass a small corridor featuring two 

intersections and a grid network with a 2x2 intersection configuration. The incident generation 

module introduces various traffic scenarios to the RL agent, and once again, hyperparameter 

tuning confirms the DQN model's effectiveness in reducing congestion and enhancing system 

performance. Robustness testing under varying demands demonstrates the consistent 

performance of the DQN model. 

In summary, this technical report underscores the potential of RL algorithms in 

optimizing traffic signal control, both in scenarios with and without traffic incidents. The 

incident generation module creates a realistic learning environment for RL agents, resulting in 

improved system performance and reduced congestion. Furthermore, the importance of 

hyperparameter tuning is emphasized as a critical component in establishing a strong foundation 

for RL training processes.  
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Chapter 1.  Introduction 

Traffic signal systems play an essential role in the transportation network to minimize the 

number of traffic accidents and maintain orderly traffic flow. Traffic signal control methods 

include three broad categories: pretimed control, actuated control, and adaptive control. Pretimed 

control has fixed cycle lengths and phasing, so it is not responsive to traffic demand fluctuations. 

Actuated control is designed to respond to variable traffic demands but the nature of the potential 

response is  constrained by the combination of detection capability and fixed controller settings. 

Adaptive control could lead to better performance if the proposed methods can accurately predict 

future traffic patterns.   

With the explosive development of computing power and data accessibility, as well as the 

advanced development of artificial intelligent (AI), there are more possibilities to improve 

existing traffic signal control performance (Winston, 1992; Russell and Norvig, 2002). Three 

categories of AI technologies have been used commonly: supervised learning, unsupervised 

learning, and reinforcement learning. Because of the characteristics of the traffic signal control 

problems, reinforcement learning fits our needs  best (Arel, 2010). Reinforcement learning is 

designed to handle optimization problems by learning the interaction between agents and the 

environment. The core concept behind reinforcement learning is to take advantage of the 

machine computing capability to discover the relationships between the traffic signal control, the 

intersection environment and the traffic flow patterns by trial and error. Due to the complexity of 

the problem, it would be impractical for human beings to complete such complicated calculations 

in a short period of time. 

Deep Q-learning is one of the most commonly used methods in reinforcement learning 

because of its ease of implementation and better performance as the data scale increases. Deep 

Q-leaning is a combination of Q-learning and deep neural network. Q-learning represents a 

method to use a determined or approximated Q-table to guide the actions of the agents. With the 

training process, the Q-table is updated and reaches convergence so that every action taken in the 

future will be the best choice of the agent in order to maximize the long-term cumulative 

rewards. 

Combined with deep learning, reinforcement learning can explore more complicated 

relationships between the agents and their environment to provide potentially better performance 

(LeCun et al., 2015; Goodfellow et al., 2016; Kamilaris and Prenafeta-Boldú, 2018). Deep 

learning relies on a neural network, which mimics the thinking and decision-making process of 

neuron activation (Wang, 2003; Abiodun et al., 2018). The more layers of the neural network 

used, the more complicated patterns between the inputs and outputs can be detected. However,  

more layers of neural network also require more computing power during the calculation. One 

must consider the tradeoff between the calculation effort and representation of the relationship 

between the inputs and outputs. 

For a complicated problem, a deterministic Q-table is impossible to generate so a deep 

neural network is utilized to approximate the Q-table. Rather than having a concrete Q-table, 

deep Q-learning uses the neural network between the inputs and outputs to approximately 
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represent the Q-table. Therefore, the training process will update the coefficients associated with 

the neural network to improve the prediction accuracy.  

Although considerable research has focused on using deep Q-learning to improve the 

performance of actuated traffic signals in a network, one key question has not been targeted yet. 

That is how disruptions within the network should be addressed. The concern is that traffic signal 

control based on deep Q-learning and normal traffic condition settings might not be able to 

adequately respond to traffic flow disruptions caused by traffic incidents (crashes, disabled 

vehicles or objects dropped on the roadway). This dissertation is developed to fill this gap, 

developing a robust traffic signal control equipped with the deep Q-learning while also 

considering traffic incidents in the network. 

1.1 Problem Statement 

Without testing the performance when traffic incidents occur, the robustness of the deep 

Q-learning traffic signal control for the network cannot be guaranteed. When traffic incidents 

occur, the network will suffer a sharp and temporary capacity shortage on the involved link(s) 

causing diversion to other links. Traffic signal timing is the only practical means of responding 

to incident disruptions to reduce the negative impact of traffic incidents. Due to the complexity 

of the network problems, operators from the traffic management center often cannot provide an 

optimal traffic signal plan in a short period of time. Traffic incidents can occur in any location 

and any situation in the network, making the previous experience less useful.  

The core problem of the traffic incident case is sudden unmatched travel demand and 

supply. If traffic signals can utilize the real-time objective inputs from their environment, 

including traffic flows and intersection performance (e.g., queue length and total control delays), 

to take actions quickly enough, the network performance could be improved immediately. 

Reinforcement learning methods promise to provide solutions for this kind of problem. 

Each AI agent keeps exploring the relationship between traffic signal control and vehicle queue 

length in its intersection and once the knowledge collected is enough to produce an accurate 

approximation, the action chosen by the AI agent (maintain the current phase or shift to another 

phase) will maximize the improvement of the intersection performance in terms of the chosen 

measure of effectiveness such as queue length or delay reduction.  

If the agent has never experienced traffic incident impacts, it must encounter the situation 

enough times to “understand” the impact of  incidents and how to take optimal actions 

responsively. Creating traffic incidents in the real network to train the deep Q-learning algorithm 

is problematic so the simulation method comes in handy. There are no available simulation tools 

on the market to allow users to combine the application of reinforcement learning and traffic 

network incidents. 

This study is to fill this gap. By developing an incident responsive network in an open-

source microscopic simulator and exploring the advanced deep Q-learning method, a robust AI-

assisted actuated traffic signal control system will be developed.  
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1.2 Objectives 

The objectives of this dissertation include the following key components: 

1. Build a traffic incident responsive simulator based on an open-source microscopic 

traffic simulation software system. This simulator will characterize an incident occurring in the 

network and blocking a lane that is part of a link. In addition, the simulator will simulate the 

impact of emergency service vehicles (an abstraction of police cars, EMS, etc.) in response to the 

incident. In this way, the full impact of the incident and the rescue process can be evaluated 

quantitatively based on traditional measures of effectiveness, such as queue lengths and total 

system delay. 

2. A deep Q-learning model will be developed and trained with the data from the 

simulation process. The proposed deep Q-learning method will take advantage of the most 

advanced methods in the market, including the prioritized experience replay and dueling 

network. The deep Q-learning model will be trained in a single intersection without traffic 

incidents.  

3. The well-trained deep Q-learning model will be applied to all the traffic signals of a 

grid network where all intersections are identical to the single intersection in the previous study 

and the network will encounter traffic incidents occurring randomly in time and location. 

Transfer learning methods will be applied to reduce the calculation tasks to allow the deep Q-

learning model to perform well in a different environment.  

1.3 Expected Contributions 

To achieve these goals, this study explores the application of RL, specifically Q-learning 

integrated with deep neural networks, to enhance traffic signal control. It explores RL's capacity 

to enhance traffic flow and alleviate congestion, effectively addressing the shortcomings of 

conventional fixed-time and actuated signal systems. 

1.4 Report Overview 

This dissertation is organized as follows. Chapter 1 describes the motivation, problem 

statement, objectives, and research scope. Chapter 2 is a comprehensive literature review of the 

history of traffic signal control, the common framework of traffic signal control, and the most 

advanced research on traffic signal control based on reinforcement learning methods. Chapter 3 

presents the proposed deep Q-learning model as well as advanced tools to improve its 

performance. Chapter 4 explains the open-source micro simulation software, the traffic incident 

analysis module, network choice, demand generation, and details from the incident module. 

Chapter 5 describes the model performance for a single intersection without traffic incident 

disruptions. Chapter 6 describes the transfer of the proposed deep Q-learning model to a network 

with adjustments to enable evaluation of traffic incident handling. Chapter 7 concludes the 

dissertation and suggests future work.  
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Chapter 2.  Literature Review 

2.1 Introduction 

An intersection is where vehicle paths cross sharing a common space. In earlier days, 

there were no traffic control devices to facilitate the common space sharing, so users had to 

compete for the right of way. To improve safety and facilitate orderly space sharing, traffic 

control devices were introduced.  Traffic control signals are commonly used by agencies to 

improve intersection safety and operational efficiency. 

Generally, signalized intersections accommodate all ground transportation modes, 

including passenger cars, bicycles, and pedestrians. However, the purpose of this paper is 

building fundamental reinforcement learning traffic signal control based on simulation methods 

so only passenger cars are considered throughout the paper. 

The following section summarizes important literature for the development of traffic 

signal control methods, including pretimed, actuated, adaptive, and machine learning control.  

2.2 Traditional Traffic Signal Control Methods 

The basic logic behind traffic signal timing is to provide optimal amounts of green signal 

time to conflicting movements to reduce conflicts and decrease the likelihood of traffic accidents 

and to improve efficiency usually measured by fewer delays. 

There are three types of traffic signal control methods commonly used today: pretimed, 

actuated, and adaptive. None of them is superior to the others since they perform different roles 

for different types of intersections as well as traffic arrival patterns. Therefore, all of them can 

have a significant impact on the traffic network in terms of safety and efficiency. 

2.2.1 Pretimed Signal Control 

 Pretimed traffic signal control is defined as a predetermined traffic signal schema with 

fixed green time for each phase as well as fixed cycle length and fixed phase patterns. The signal 

cycle length needs to be tuned to minimize the control delay and the green time split for each 

approach is normally based on the flow ratios between different phases (Kell and Fullerton, 

1991). 

Pretimed traffic signal control methods are commonly used for both isolated intersections 

and networks (Bell, 1992; Slinn et al., 1998). Webster proposed a closed-form formula to split 

the green time proportionally by taking into account the historical traffic flow ratios between 

phases (Webster, 1958). The cycle length is tuned based on the characteristics of the intersection 

to minimize the total delay. No real-time data from the field is required and the historical traffic 

flow needs to be aggregated.  

Coordination of pretimed controllers to produce traffic progression can improve network 

efficiency decreasing unnecessary stops and reducing delays. The GreenWave was developed 

(Roess et al., 2004) as an extension of the Webster methods by considering the travel time at a 

chosen speed between intersections (called offset) to reduce numbers of vehicular stops. This 
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method requires all associated intersections to have the same cycle length, which is usually the 

maximum cycle length from all intersections. 

Practitioners have developed different types of extensions of pretimed traffic signal 

control. For example, intersections could have different pretimed traffic signal schemes during 

different times of the day and different schemes for weekdays and weekends (Mirchandani and 

Head, 2001).  Instead of having only one signal plan for a specific intersection, as many as 20 

different plans could be applied and could be automatically chosen by the signal controller based 

on either time of day or traffic demand (Roess, 2004). 

Pretimed signal control is an offline method which means there is no need to collect any 

real-time information from the field. It relies on historical traffic data to adjust the green time 

split, cycle length, and phase patterns. It is easy to maintain compared to other more advanced 

traffic signal control methods which require field data, including flow and queue length to tune 

their parameters. Therefore, pretimed signal control is still the most commonly applied method 

in the traffic network. 

2.2.2 Actuated Signal Control 

Since traffic demand constantly varies, the basic objective of signal control is to 

accommodate demand variability.  Pretimed methods can address this variability by choosing 

among many stored timing plans by time of day or volume thresholds (if detection is provided).  

Actuated signal control measures real time traffic flows for all actuated phases and is designed to 

be flexible enough to change green times in response to demand (Fellendorf, 1994).  Every 

actuated phase has a maximum green time so if demand is heavy on all phases, every phase will 

be the maximum green and the actuated scheme evolves into pretimed operation.  Actuated 

control does not work well in coordinated signal systems, since time-based coordination requires 

every signal to have the same cycle length, that is, to provide time based coordination in a 

network, actuated signals must “act like” pretimed signals (Yin, 2007).  

Actuated signal control collects real time data from the intersection approaches, such as 

queue length or traffic flow, to extend the current phase duration or terminate the current phase 

to start the next phase as needed. In actuated traffic signal control, several key components could 

be varied, including phase sequences, green time for each phase, and cycle length, which does 

not coordinate with other adjacent intersections (Roess, 2004). 

The benefits of implementing actuated signal control are obvious. It can adjust the current 

plan to the varied traffic conditions, such as flow fluctuation or changing traffic demand patterns, 

to minimize control delay and improve efficiency. It is recommended to use actuated traffic 

control in a non-oversaturated traffic flow scenario. Because if the traffic flow is approaching the 

capacity of the road and stable, especially during the peak hours, pretimed signal control 

programmed proportionally to the critical flow will be equivalent but less expensive and require 

less maintenance. 

Semi-actuated control refers to actuated control with detectors only on the minor road so 

the green rests on the major road until a vehicle is detected on the minor road. In this way, the 

associated intersection can maintain the green time for the major road and also provide service to 
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the minor street when needed. This method is appropriate for intersections where the traffic 

pattern has a noticeable difference in volume from the major and minor roads. If the actuated 

green phase for the minor roads is called too many times, the vehicles from the major roads 

suffer significant delay and more stops, which is against the purpose of implementing the semi-

actuated control. 

Fully actuated control includes detectors for all signal phases and allows real time 

adjustment of the signal plan to accommodate traffic for all intersection approaches rather than 

only the minor roads. By taking into account real time traffic flow from detectors, the signal plan 

can extend or terminate any phase as needed. This helps the intersection to respond to varied 

traffic flow from all approaches (Lin, 1985). 

Researchers have investigated methods of using actuated control in coordinated 

networks, however, as noted earlier, coordination methods generally require actuated control to 

limit the flexibility they are designed to provide.  Two famous fully actuated signal control 

methods are Self-Organizing Traffic Light (SOTL) and max pressure. Self-organization used 

here represents the concept of signal control for intersections in a network that can interact with 

each adjacent one and achieve dynamically a global optimum (Gershenson, 2005). Cools et al. 

(2013) proposed an on-demand responsive actuated signal control with varying traffic demand 

and overcame the traditional green wave method of allocating unnecessary green time or 

deficient green time for the incoming vehicles. It is a method that helps traffic flow move as 

platoons by forcing the vehicles to wait at the stop line until a queue size threshold is met. Once 

the approaches accumulate queues surpassing the predefined threshold, the green signal shifts to 

move those vehicles potentially more efficiently than the existing green wave method. 

Max pressure control was introduced into actuated signal control (Varaiya, 2013). This 

method monitors the pressure from all approaches, as the difference between flow for incoming 

lanes and outgoing lanes of each approach, and chooses the maximum pressure releasing phase 

to allow the maximum number of vehicles to enter the intersection and hence ensure the 

minimum pressure for the phase duration. This method requires vehicle flow information from 

adjacent intersections as a precise measure of the pressure. Weighted queue lengths are needed to 

calibrate intersections to achieve the best performance. 

Actuated control could be categorized into two broad classes, including isolated and 

coordinated. Isolated intersections with actuated control only focus on improving efficiency and 

safety of one intersection, while coordinated intersections will deploy a reasonable offset and 

other parameters to reduce the unnecessary stops and delay for the coordinated network.  

Semi-actuated can be used for an arterial corridor since the major traffic flow would use 

the arterial street and minor cross streets would be served with green only when needed 

(Skabardonis, 1998). The majority of the green time and capacity should be assigned to the 

corridor rather than the minor movements. Fully actuated control would be most beneficial for 

isolated intersections where traffic demands from all approaches vary heavily. 

Implementing actuated signal control to adjust the control plan in real-time has 

limitations. A complicated program must be provided for the controllers to take the inputs and 

adjust the control plan accordingly. The cost of installation is more expensive than pretimed 
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signal control and maintenance costs are another problem. The induction loop detectors 

commonly used in these methods are installed under the pavement surface and if the pavement 

structure moves either vertically or horizontally the inductance loop detector wires break and the 

cost of replacing them is not trivial.  

2.2.3 Adaptive Signal Control 

Adaptive signal control refers to the technology that collects real-time data from the 

installed detectors to dynamically determine green phase and its duration in response to current 

and predicted future traffic demands based on programmed algorithms to increase the 

performance of the intersections. 

Adaptive signal control is considered to be advantageous over actuated signal control for 

providing lower control delay and better intersection throughput performance (Gayah, 2014). 

The key component of adaptive signal control is to dynamically adjust the parameters based on 

the future traffic flow prediction (Klein, 2001). The most famous traffic signal control 

frameworks based on adaptive signal control include TRANSYT, Split Cycle Offset 

Optimization Technique  (SCOOT), Sydney Coordinated Adaptive Traffic System  (SCATS), 

Optimized Policies for Adaptive Control (OPAC), Real-Time Hierarchical Optimized 

Distributed and Effective System (RHODES), and ASC Lite. The following content will review 

all of these frameworks. 

In 1969, Robertson proposed a fixed-time traffic signal control algorithm based on the 

traffic flow passing through a road network to minimize the sum of the average queues in the 

network (Robertson, 1969). It is an off-line method that uses macro-simulation since it relies on 

historic flow data. It was one of the earliest traffic signal control methods that relied on a digital 

computer program to help researchers and practitioners to optimize the traffic signal control, 

including offset and green time split. It can be used to control up to 50 intersections in a network. 

The core components in TRANSYT are based on cyclic flow profiles (CFP) that estimate 

queue lengths based on historic data so to evaluate the performance of alternative signal timings. 

The CFP measures the one-way traffic flow from one approach and averages the flow over a 

specific duration. The estimated queue length and clearing time from the CFP are used to predict 

the impact of offset and green splits to find the best signal timing parameters. 

Based on the TRANSYT, SCOOT was introduced to overcome some of the limitations of 

TRANSYT (Hunt, 1981). As mentioned before, TRANSYT is an offline method and relies on 

historic data. In contrast, SCOOT takes advantage of technology development as vehicle sensors 

have become available. Detectors are installed upstream to obtain traffic flow information so to 

improve the estimation of queue length accuracy. In addition, since SCOOT relies on real-time 

traffic information and calculates the signal timing parameters quickly, it is an online method. 

Lastly, SCOOT adjusts the signal timing parameters gradually to avoid significant timing 

fluctuations that could disrupt flow (Hunt, 1981). Transport and Road Research Laboratory 

(TRRL) tested the performance of SCOOT in England cities in 1975 by floating cars and found 

that SCOOT reduced average queue length by 12% (Robertson, 1986). 
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SCATS was introduced in Sydney, Australia in 1990. It utilizes the traffic flow inputs 

collected by installed detectors to understand the real-time traffic. It also has a library that 

records the pre-defined signal plans based on the traffic flow patterns to help dynamically adjust 

the signal timing parameters in a short period. The adjustable parameters include phase split, 

cycle length, and offsets (Lowrie, 1990). SCATS has been implemented in Australia for 

controlling more than 1,800 signals and has achieved significant improvement in terms of 

reducing delay and queue length. In addition, SCATS has been implemented in multiple other 

areas and has achieved promising performance improvement (Akcelik et al., 1998; Stevanovic, 

2009; Dutta et al., 2010).  

In the early 80s, researchers at the University of Lowell with support from the U.S. 

Department of Transportation developed OPAC, varying signal timing plans dynamically to 

accommodate real-time traffic demand patterns. It ignores the cycle concept and only considers 

the split time of sequential phases by either extending the current phase or starting the next phase 

earlier (Gartner, 2002). Implementation of this method requires predetermining the phases for 

each intersection. To improve performance, OPAC considers both real-time data collected from 

upstream detectors and historic flow data for better queue and delay estimation. Dynamic 

programming and rolling horizon optimization are used to find the optimal solutions for the 

signal timing parameters in response to traffic patterns. OPAC can be implemented for 

distributed individual intersections to achieve network-level optimization (Gartner, 2001).  

RHODES is another famous adaptive signal control framework that can be implemented 

for a distributed system. RHODES utilizes an hierarchical control structure for connecting 

different components in traffic signal optimizing problems, including network loading, network 

flow estimation, and traffic signal control activation by exploiting the modern technologies and 

availability of real-time data (Head, 1992). RHODES not only considers the software for traffic 

signal control, but also the hardware components, such as the communication system. RHODES 

applies a dynamic programming method to optimize the single intersection signal timing plan for 

splits and cycle length while implementing the REAMBAND model for platoon progression 

optimization (Dell, 1995). 

To reduce the costs of installation and operation while keeping the benefits of traditional 

adaptive signal control frameworks, the Federal Highway Administration (FHWA) (Ghaman, 

2007) developed ASC Lite to integrate the process of traffic flow monitoring and signal plan 

optimizing accordingly. ASC Lite focuses on linear and arterial networks. The developed control 

module has been included in the CORSIM simulation software for users to deploy and test their 

signal timing strategies. 

Performance of ASC Lite has been evaluated (Shelby, 2008) by field implementation, 

including Gahanna, OH, Houston, TX, Bradenton, FL, and EI Cajon, CA. The evaluation shows 

that ASC Lite has been demonstrated effective in terms of reduction of delay, arterial travel time, 

fuel consumption, and vehicle stops. In addition, ASC Lite was also evaluated by field 

implementation in Albany, New York, showing that the system provided benefits of delay 

reduction in the core area of the analytical network, but not the boundary (Ban, 2014). 

In conclusion, adaptive signal control has attracted a large number of researchers and 

practitioners to develop various frameworks and test their performance in real scenarios. 
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Evolution of these strategies is mainly due to modern technologies and algorithms, including 

faster computing machines and more efficient mathematical algorithms. With the rapid 

development of learning algorithms and lower costs of data storage and computing, 

reinforcement learning has been adopted to improve signal control performance.  

2.3 Reinforcement Learning Traffic Signal Control 

Machine learning tackles the problems that relate to detecting patterns and drawing 

conclusions from historic experience. Reinforcement learning, one of the most famous machine 

learning techniques, focuses on optimization problems by directly converting input data into 

action choices without modeling the environment. For example, in the traffic signal control 

process, the adaptive control methods require the prediction of the queue length or vehicle arrival 

patterns from the adjacent network through mathematical models. In a complex system, 

particularly in the transportation network, to fully understand the relationship between vehicle 

arrival patterns and traffic signal phase durations is difficult, sometimes even impossible. 

However, in reinforcement learning, models of this kind of detail are not required and hence 

attract many researchers to explore its capability in the signal control domain (Abdulhai, 2003). 

Reinforcement learning collects experience from the interaction between an agent and its 

environment. Without building a model for the environment, the agent could extract useful 

information from the environment and use trial and error to come up with a solution to improve 

its behavior to achieve a long-term goal (Sutton and Barto, 2018). 

Reinforcement learning includes model-free and model-based algorithms. In our 

scenario, where traffic signal control responds to varying traffic demand, model-based 

algorithms will require modelers to pre-specify the models for the intersection as well as the 

vehicle arrival patterns, which is difficult. Therefore, model-free approaches achieve a 

significant focus in the traffic signal control field, especially Q-learning. The Q-learning agent, 

the signal controller, collects the state from its interacting environment to adjust its behavior to 

improve its performance measured by a performance index. It has many advantages facilitating 

the improvement of traffic signal control. Watkins proved that Q-learning would converge to 

optimal action-values with the probability of 1 as long as all state and action pairs are repeated in 

the samples (Watkins, 1992). More details for Q-learning will be introduced in Chapter 3. Here 

we focus on the applications of reinforcement learning to traffic signal control. 

2.3.1 Isolated Intersections 

Abdulhai (2003) proposed a simple yet powerful Q-learning model for traffic signal 

control associated with an isolated intersection. The traffic demand contains two straight 

movements, including east-west and north-south. The state includes the queue lengths from all 

approaches as well as the elapsed green time of the current phase. The traffic control agent can 

choose two actions, either remain in the current phase or shift to the next one. Cycle length was 

not fixed but minimum and maximum green splits are chosen for each phase for practical 

reasons. The reward function was measured by a power function of the queue length from all 

approaches to discourage longer queues for some approaches. The proposed Q-learning traffic 

signal controller was compared with the pretimed signal control through simulations with three 

different traffic demand profiles to reflect traffic pattern variation including off-peak and peak 

hours. When traffic demand is constant and near the intersection capacity, the Q-learning 
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controller performed on a par with the pretimed signal control, however, when the traffic 

becomes variable, the Q-learning controller reduced system delay by 40% on average. This 

research laid the foundation for implementing Q-learning in the traffic signal control field. 

El-Tantawy et al. extended Abdulhai’s work by fine-tuning the parameters used in the Q-

learning traffic signal control model with a real case study in Downtown Toronto in a simulation 

environment (El-Tantawy et al., 2014). The proposed model outperformed optimized pretimed 

traffic signal control and actuated signal control by saving about 50% average vehicle delay. 

One limitation of the Q-learning signal controller mentioned above is that the model 

requires the full representation of the state collected from the intersection. If the model is 

extended to the network level, this method would not be able to be computed efficiently. To 

tackle this limitation, Prashanth and Shalabh (Prashanth, 2010) developed a Q-learning technique 

with a function approximation method to reduce the size of inputs and significantly reduce the 

computing time to get the model to converge to optimal conditions. Instead of precise 

observation of queue lengths, the function approximation method abstracted the demand level 

and waiting time into several categories. The proposed model was compared to the prior work 

and the results show that Q-learning with function approximation provided better performance in 

terms of less computing time and data storage while maintaining the control performance 

(Abdulhai, 2003). 

Lu et al. evaluated the performance of Q-learning for an isolated intersection with 

transition curve theory to estimate the delay for each approach (Lu et al., 2008). The state is total 

delay for the single intersection. The action sets include four phases with 2 seconds interval 

alternation. The reward function is the same as the state, which is total intersection delay. The 

proposed model was compared with the fixed signal settings and the results show a car in the 

system can save 21 seconds per cycle. 

Chin et al. also applied a Q-learning algorithm to an isolated intersection. The state is the 

different levels of queue length and the number of phases in the signal plan (Chin et al., 2011). 

Actions were defined by the green time choice of each phase in a 5-second duration. Rewards 

were measured by the number of vehicles in the queue from all approaches. Various traffic 

conditions including flow saturation levels were examined in the simulations. The results showed 

that total delay could be reduced even in peak times compared to the optimized fixed-time signal. 

2.3.2 Coordinated Intersections 

Rather than focusing on improving the performance of adaptive signal control on an 

isolated intersection with the help of Q-learning algorithms, some research explored its benefits 

in the context of the transportation network with multiple intersections. 

Balaji et al. designed a distributed multi-agent-based Q-learning traffic signal control for 

improving the existing adaptive signal control in an urban arterial network in the Central 

Business District of Singapore (29 intersections) to reduce the total delay and travel time (Balaji 

et al., 2010). Data collected from all intersections share information with adjacent intersections 

so the expected vehicle arrival patterns could be evaluated accurately. Parameters used in the 

model were fine-tuned with real-time information for the reinforcement learning model. 
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Simulation results showed significant delay reduction compared to other network traffic control 

systems. 

Abdoos et al. explored the performance of multi-agent Q-learning for the network where 

peak traffic patterns do not appear and conventional traffic signal timing does not provide an 

efficient solution (Abdoos et al., 2011). Average queue length from all approaches in a fixed 

cycle was used as the state representation in the Q-learning model. Cycle time of all intersections 

remained the same during the optimization and the actions refer to the choice of remaining in the 

current phase or changing to the next one with a fixed, small amount of green time. The reward 

used in the model is inversely proportional to the average queue length from all links in the 

network, normalized to the range of 0 to 1, which could reduce the weight computing time in the 

Q-learning models. Fifty intersections were used to test the performance of the proposed model 

and two traffic profiles were used in the simulations, showing the proposed model outperformed 

the fixed signal timing plan in the same network by reducing the queue length and delay time. 

However, the size of the network exerted a significant computing burden on the system, and 

model improvement is needed. 

Abdoos et al. developed a two-level hierarchical control model based on Q-learning 

(Abdoos et al., 2014). The bottom level comprises multiple intersections from a smaller region in 

the network and performs Q-learning to optimize the signal timing plan individually, while the 

top-level implemented tile coding to reduce the size of the state from the bottom level and 

abstract the model to a computing degree that field implementation of the proposed multi-agent 

Q-learning model could be practical. A network with 9 (3x3) intersections was used to show the 

performance of the proposed model and concluded that while maintaining the optimization of 

signal timing for bottom level intersections and also achieving promising results in reducing 

delay in the system from the top-level coordination. 

2.3.3 Deep Q-learning 

With the advent of the deep neural network, Q-learning has been improved and deep Q-

learning models could yield more promising results. 

With high-dimensional inputs available from intersections, such as camera images from 

surveillance cameras, simple Q-learning has difficulties representing the complex sensory inputs 

and actions and generalizing past experiences to new situations (Mnih, 2015). To mimic the 

human and animal brain learning process, a hierarchical neural network, termed deep neural 

network (DNN), was introduced to handle the extremely high complexity of input data and 

actions. Combined with Q-learning, deep Q-learning (DQN) was proposed for the existing Q-

learning models. The prototype of DQN tested in the Atari 2,600 games significantly 

outperformed the previous Q-learning model based on pixel image data extracted from the 

games. 

Since the publication of DQN, its application in traffic signal control has been evaluated. 

Genders and Razavi developed a DQN with experience replay for optimizing the signal timing of 

an isolated intersection (Genders and Razavi , 2016). Due to the advantages of DNN which can 

handle information-dense inputs efficiently, the state represented in this research contains the 

discrete cell representation of the road segment. Three vectors associated with each cell, 
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including vehicle presence status, the speed of each vehicle, and the current traffic signal phase, 

were used as the state, forming an information-dense input. Instead of only considering the queue 

length or average vehicle delay normally applied in the Q-learning methods, this kind of 

information-dense input could help the agent learn more from the complex input and generalize 

the experience to the new situations better, achieving a faster convergence with less computing 

time with similar parameter settings. Experience replay was another important technique used in 

this research, which uses extra memory to save the past experiences, a tuple of action, state, and 

reward, to train the model more efficiently. The proposed DQN for isolated intersection signal 

control improved the intersection performance compared to a one-layer Q-learning model, 

showing the benefits of applying DNN. 

Ge et al. proposed a cooperative DQN with Q-value transfer for multi-agent-based 

adaptive signal control (Ge et al., 2019). Individual intersections relied on the deep Q-learning 

model to optimize their performance respectively. The cooperative mechanism was triggered 

when the centralized control system combined the latest optimal performance of each 

intersection and transferred the Q-value from adjacent intersections for a quicker learning 

process and less computing time.  

In conclusion, deep Q-learning either for a single intersection or a network with multiple 

intersections can improve model performance by taking into account more complex sensory data 

and actions at the expense of more computing time. However, both existing research for Q-

learning and deep Q-learning fail to consider the network with traffic incidents and hence 

prevent practitioners from understanding their performance in this situation. 

2.3.4 Traffic Incident Management in Traffic Signal Control 

Traffic congestion can be classified into two categories: recurring and non-recurring. 

Recurring congestion is due to traffic demand pattern variations throughout the day, such as 

traffic demand in the peak hours that exceeds capacity. Recurring congestion tends to occur daily 

and allows traffic management personnel to seek solutions. Non-recurring congestion comes 

from special events, such as traffic incidents and activities that increase travel demand such as 

major sports events. Traffic incidents, for example, occur in various locations, under different 

traffic patterns, and rarely repeat so traffic management agencies do not have enough experience 

to plan traffic signal adjustments required to deal with the real-time scenarios. (Mao, 2019). 

Traffic incident management (TIM) aims to detect the incident rapidly and recover the 

transportation infrastructure capacity as quickly as possible (Carson, 2010). Various tools and 

strategies are proposed to facilitate traffic incident management, including manually adjusting 

adjacent traffic signals to temporally increase capacity to accommodate the traffic patterns under 

the impact of traffic incidents. However, due to the characteristics of traffic incidents, such as 

random locations, times of day, and traffic patterns, manually adjusting the traffic signals is 

almost impossible. 

Logi and Ritchie proposed a knowledge-based system for non-recurring traffic 

congestion supporting traffic management personnel to select integrated traffic control plans, 

including traffic diversion and signal timing adjustment, to decrease traffic flow metering from 

the incident locations and increase capacity for the congested approaches (Logi and Ritchie, 
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2001). This traffic congestion management tool relied on the knowledge collected from a set of 

predetermined incident locations by varying the inputs, such as flow saturation degree and traffic 

signal timing parameters, to increase the uncertainty of the environment to mimic the real-time 

scenario. The model provides a selection of control plans for the users as well as the reasoning 

logic for the target goals. However, the model did not include enough detail about how to choose 

the adjacent signalization intersections, and algorithms for adjusting signal timing parameters 

were not provided.   

Wirtz et al. evaluated the impact of traffic signal adjustment from a preplanning 

perspective for a full road closure on I-94 (Wirtz et al., 2005). Dynamic traffic assignment-based 

simulation was used to compare the traffic delay in time before and after manually adjusting the 

traffic signal plans near the incident locations. The results show that the preplanning of the traffic 

incidents in terms of traffic signal control adjustment could reduce the traffic delay and recover 

the roadway capacity faster than the original traffic signals operating in normal conditions. 

Ban et al. developed a decision-making tool to determine if adaptive signal control is 

better than the existing actuated signal control system in real-world situations by using a 

regression model and support vector machines (Ban et al., 2016). However, this research failed 

to discuss the impact of traffic incidents in the comparison. 

Mao et al. proposed genetic algorithms to optimize adaptive traffic signal control under 

severe incident conditions (Mao et al., 2019). This research first fine-tuned the model parameters 

in a recurrent traffic condition and then implemented the improved model in non-recurring 

situations. The results concluded that the proposed genetic algorithm reduces the traffic delay by 

over 40%. 

2.4 Summary  

Reinforcement learning is advantageous compared to conventional signal control 

methods. Data that is currently available to characterize the intersection or network state can 

become intensive and conventional methods cannot make use of this information as efficiently as 

reinforcement learning which relies on the computing capability of modern machines. For 

example, reinforcement learning could directly use camera images as the inputs for the learning 

model to extract useful information and output the model results. Second, reinforcement learning 

can take advantage of the model-free techniques, such as Q-learning, to avoid a need to explicitly 

model intersection characteristics to reduce errors of input interpretation. Third, reinforcement 

learning can autonomously improve itself as long as the computer runs which leads to the 

continuous improvement.   

Although many research efforts have implemented reinforcement learning models in 

normal traffic conditions to show its advantages over conventional signal optimization methods, 

the analysis of reinforcement learning-based signal control under traffic incidents has largely 

been ignored. This dissertation contributes to filling this gap by building a reinforcement 

learning model, particularly the Q-learning model in traffic signal control by considering traffic 

incidents in the network to improve network delay reduction performance. Two main 

contributions will be included: 1. An independent incident generation and emergency vehicle 

response module will be developed in a microsimulation platform to generate incidents randomly 

in the network with random duration to provide the learning agent enough experience with 
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network traffic incidents. 2. The parameters of the DQN model used in the single intersection 

will be optimized. The derived model will be transferred into a network with 16 intersections 

(4x4) with little computing time to perform cooperative adaptive signal control to alleviate traffic 

impacts of traffic incidents. This would build the foundation for evaluating the deep Q-learning 

performance in the network settings in response to the random occurrence of traffic incidents in 

the network.  
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Chapter 3.  Deep Reinforcement Learning Algorithm 

3.1 Introduction 

In this chapter, key concepts of reinforcement learning are illustrated as well as Q-

learning and its variants for improvement. 

3.2 Reinforcement Learning 

Reinforcement learning is a process through which an AI agent  takes sequential actions 

by interacting with its environment by trial and error to solve a task, which is often modeled as a 

Markov Decision Process (MDP). An MDP is a mathematical framework for modeling decision 

making in a discrete and stochastic control process (Howard, 1960).  

At each time step 𝑡, the agent observes a state s from the environment, where 𝑠 ∈ 𝑆 and 𝑆 

represents all possible states in the environment. The agent takes an action a by following some 

predetermined rules where 𝑎 ∈ 𝐴(𝑠) and 𝐴(𝑠) represents all potential actions for the agent to 

perform at state s. The environment shifts to another state s^' with the impact of the performed 

action and sends a numerical signal, termed reward 𝑅(𝑠, 𝑎, 𝑠′ ), to the agent to inform whether 

the action is promising as expected. The process repeats until the terminal state is reached. The 

whole process can be described in Figure 3.2-1. 

 

Figure 3.2-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018) 

 

State 𝑆 is a member of the set of all observations of the environment represented  by the 

model. Take traffic signal control as an example, if the longest queue length from each approach 

is determined to be used to represent an isolated intersection, the possible states can be 

represented by an integer array with a size of 4 and each integer represents the longest queue 

length of each approach with only straight movement traffic demands.  

The set of actions 𝐴 defines the choices of the agent to exert on the environment. In the 

case of traffic signal control, the agent is the traffic signal controller. The actions the agent can 

perform include extending the current phase green time or shifting to the next phase from the 

available phases. For some cases, the agent can skip phases if conditions are satisfied, which is 

predetermined by the modeler. 
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The Markov property states that the future is independent of the past (Markov, 1954). 

Therefore, the transition function 𝑃 models the transition probability of new state 𝑆′ based on the 

current state 𝑆 and chosen action 𝐴 as follows: 

𝑃(𝑆′ = 𝑠′|𝑆 = 𝑠, 𝐴 = 𝑎) = 𝑝(𝑠′|𝑠, 𝑎) 

In the case of traffic signal control, assume the current state is s and the signal controller 

chooses to extend the current phase. If we knew the transition function, we could get a 

deterministic new state. However, the transition function of a dynamic environment, such as a a 

transportation network, is hard to obtain and estimation is required to solve this issue. 

Reward 𝑅 is an immediate quantified signal that the agent receives from the environment 

as the result of taking an action, and it directly notifies the agent if the action is good or not. In 

the case of traffic signal control, if we choose to extend the current phase, but the current state 

has no traffic demand for it, this environment should send a negative reward to the agent that it is 

not a good choice.  

To be more specific, the agent first observes its environment and senses the inputs, 

termed state. The agent takes an action from its action set based on the existing information and 

knowledge learned from its past experiences. The environment changes to the next state from the 

previous one based on the action performed by the agent. The new environment will send a 

signal, termed reward, to the agent telling the agent whether the taken action is good or not. If 

the reward is good, the agent will learn it and use a method to save this joy experience so it tends 

to perform the same action the next time it experiences the same state. Otherwise, the agent 

would not take the same action to avoid punishment, e.g., negative rewards. For a deterministic 

environment, where states and actions are limited, as long as the agent experiences all the 

possible states and actions, the agent will fully understand the relationship between its states and 

actions and hence achieve the maximum accumulative rewards through the process. Then, the 

agent has completed the learning task. 

One of the challenges of reinforcement learning is when the MDP cannot be fully 

determined in terms of the transition function. Two common learning methods are used to 

overcome this issue. The first one isto build a model of the MDP and find the optimal policy. 

The second approach is to gain knowledge through experience (a tuple of state, action, reward, 

and new state) and estimate the optimal policy.  

In the finite MDP, an episode denotes a process from the beginning state to the end state. 

In the case of traffic signal control, one round of simulation of a traffic demand with the signal 

control process can be called one episode. During each episode, the trajectory of the 

reinforcement learning process could be represented by a series of states, actions, and rewards. If 

the learning process is finite and the final time step is denoted by T, the whole learning trajectory 

could be expressed as: 

𝑆1, 𝐴1, 𝑅1, 𝑆2, 𝐴2, 𝑅2, … , 𝑆𝑇 , 𝐴𝑇 , 𝑅𝑇  

The goal of learning is to maximize the total rewards, termed as returns denoted by 𝐺𝑡 at 

time step 𝑡. 
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𝐺𝑡 =  ∑ 𝑅𝑖

𝑇

𝑖=𝑡

 

In the above equation, every reward from time 𝑡 is equally important since there is no 

weighting factor for each one. However, in reality, the rewards might not be the same. For 

example, which one will you choose, $1,000 now or $1,000 one year later? The answer is 

definitely obvious. You will choose to get the money as soon as possible because money tends to 

depreciate in the long run. The same concept was introduced to the. Discount factor, 𝛾 is used to 

quantify this effect and the return can be calculated by the following equation: 

𝐺𝑡 =  ∑ 𝛾𝑖−𝑡𝑅𝑖

𝑇

𝑖=𝑡

 

The discount factor is a value between 0 and 1, inclusively. If it is set to 0, only the 

immediate reward will be considered. If it is set to 1, future rewards have the same value as the 

current one. Normally, the discount factor is set to be a value slightly less than 1 so we treat 

future rewards as less important than the immediate ones and it will eventually decay to 0 if the 

time steps are large enough. 

The discounted returns can also be expressed as the following by considering that the 

MDP is executed one time step at a time: 

𝐺𝑡 = 𝑅𝑡 + 𝛾𝐺𝑡+1 

This equation reflects the relationship between two consecutive returns. Note that all the 

rewards, 𝑅𝑖, where 𝑖 = 𝑡, 𝑡 + 1, … , 𝑇, in this equation have not been observed so they are random 

variables. We use 𝑟𝑡 to denote the observed reward. The randomness of 𝑅𝑡 comes from two 

sources. First, the action can be randomly chosen if exploring the environment early in the 

training stage. The other one is due to the randomness of the new state from the environment.  

3.3 Q-Learning 

Since 𝑅𝑡 is a random variable with respect to the states and actions starting at time step 𝑡, 

the returns 𝐺𝑡 is also a random variable with respect to the states and actions. To calculate 𝐺𝑡, we 

need a way to estimate future rewards. Q-learning is the most common algorithm to calculate 

returns based on the Temporal Difference (TD) learning concept. TD learning is a combination 

of Monte Carlo (MC) estimation and Dynamic Programming (DP). MC estimation allows the 

agent to learn from its experience without explicitly modeling the environment (model-free) and 

update estimates based on other estimates, while DP can be used to calculate the returns based on 

parts of observations and parts of estimations (Sutton and Barto, 2018). 

The Q-value, known as the action-function value, 𝑄𝜋(𝑠𝑡, 𝑎𝑡), is used to represent the 

expectation of returns 𝐺𝑡 with respect to the state and action at time 𝑡 as: 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸(𝐺𝑡|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡) 
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Since we have 𝐺𝑡 =  𝑅𝑡 + 𝛾𝐺𝑡+1, we can express the Q-value as follows: 

 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸(𝑅𝑡 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡) 
                    = 𝐸(𝑅𝑡|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡) + 𝛾(𝐸(𝐺𝑡+1|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡)) 
                    = 𝐸(𝑅𝑡 + 𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1)) 

There must exist at least one policy that leads to the maximum action-value function and 

we use 𝑄∗to indicate this optimal action-value function. Whatever policy is used, we cannot 

improve the action-value function by taking action 𝑎𝑡 at the given state 𝑠𝑡. Normally, we can 

remove the 𝜋 from 𝑄 to simplify the expression. 

𝑄∗(𝑠𝑡, 𝑎𝑡) = max
𝜋

𝑄𝜋(𝑠𝑡, 𝑎𝑡) 

The best action leads to the maximum action-value function which can be expressed by: 

𝑎∗ = argmax
𝑎

𝑄∗(𝑠𝑡, 𝑎𝑡) 

Since we do not know the expected value of rewards 𝑅𝑡 and returns from the next time 

step, we use the observed 𝑟𝑡 and 𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) to estimate the Q-value (Watkins, 1989). 

Combined with the DP concept to update the action-value function based on parts of the 

observations and parts of the estimations, we have the Q-learning expression (Watkins, 1989), 

defined by: 

𝑄∗(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼)𝑄∗(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄∗(𝑆𝑡+1, 𝑎)] 

Where 𝛼 is called learning rate, a hyper-parameter that is not learned from the learning 

process but determined by the modelers in advance. The learning rate determines how much the 

old Q-value should be changed based on the estimated Q-value. Q-learning trains the optimal 

action-value function 𝑄∗(𝑠, 𝑎). In the above equation, the second part of the equation is called 

the TD target, which is a combination of the observed reward by executing one time step and the 

estimated optimal Q-value from the next time step, expressed by: 

𝑦𝑡 = 𝑟𝑡 +  𝛾 max
𝑎

𝑄∗(𝑆𝑡+1, 𝑎) 

TD error represents the difference between the target value and the existing value, 

expressed by: 

𝛿𝑡 = 𝑄∗(𝑠𝑡, 𝑎𝑡) − 𝑦𝑡 

Therefore, the Q-learning update equation can be expressed by: 

𝑄∗(𝑠𝑡, 𝑎𝑡) = 𝑄∗(𝑠𝑡, 𝑎𝑡) − 𝛼𝛿𝑡 

Using the TD learning method reduces the difference of the TD error through experience. 

Once the error cannot be reduced anymore (smaller than a threshold), the learning is considered 
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to be converged and the learning process can be terminated. The Q-learning method will 

converge as long as each state-action pair can be visited enough times (Watkins, 1992). 

To enable the agent to explore efficiently early in the learning process, 𝜀-greedy policies 

are used by giving all nongreedy actions the minimal probability, 
𝜀

|𝐴(𝑠)|
, where 𝜀 is a value 

between 0 and 1 and the denominator is the size of the possible actions. For greedy actions, the 

probability is set to 1 − 𝜀 −  
𝜀

|𝐴(𝑠)|
 . As learning proceeds when the agent has more knowledge, 

the action choice will be cleverer and more efficient by lowering the probability of choosing 

random actions. This is normally realized by applying 𝜀 decay methods. 

3.3.1 Tabular Q-learning 

For a simple environment with a small number of state-action pairs, one can use the 

tabular method to solve the Q-learning problem. This method uses a table, termed Q-table, to 

save the Q-value of each state-action pair during the learning process. Once the algorithm 

converges, the final Q-table can be used to guide the agent to choose an action at any given state 

to achieve the maximum expected returns. 

An algorithm for solving the Q-learning problem by the tabular method is listed below: 

 

Figure 3.3-1.  Bus line simulation demonstration Algorithm: Q-learning 
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3.3.2 Deep Neural Network and Deep Q-learning 

For a more complex environment, when the number of state-action pairs is too large to be 

stored with a Q-table or when it is impossible to visit each state-action pair, the optimal action-

value function (𝑄∗(𝑠, 𝑎)) can be approximated. Hence DQN was introduced to improve the 

capability of Q-learning (Mnih et al., 2015). 

𝑄∗(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝑎; 𝜃) 

Here 𝜃 represents the learning parameters in the DQN. The essence of DQN is the deep 

neural network (DNN). DNN is comprised of at least three layers of artificial neural network, as 

shown in Figure 3.3-2. Activations of one layer determines activations of the next layer and the 

inputs proceed. Each layer detects a pattern from the previous layer. With a large number of 

hidden layers, the model can detect more sub patterns, compared to the model with a small 

number of hidden layers. If the number of hidden layers is less than what is required to extract 

important features from the inputs, the model might under fit the data. Otherwise, overfitting 

could occur. The number of hidden layers tends to correspond to the complexity of the input 

layer, which is a hyper-parameter to be tuned by experimentation. 

 

 

Figure 3.3-2.  Deep neural network with three hidden layers 

(https://www.ibm.com/cloud/learn/neural-networks) 

 Each neural network includes a certain number of nodes and each node is called 

an artificial neuron. Each neuron takes the outputs from the previous layer and outputs a number 

between 0 and 1 by normalization to reduce the computing time. For example, the first layer of 

the DQN is the input layer and the value of each node is only dependent on the inputs. Each node 

in the hidden layers is initialized with an arbitrary weight, as a connection between the nodes in 

adjacent layers, but cannot be the same for all nodes otherwise the model cannot distinguish the 

importance of them. Each node in the next layer is the weighted sum of all the nodes from the 

previous layer, similar to a linear regression model. Each layer will be assigned an activation rule 

and if the value of a node meets this activation rule, it will be activated and its value will be 

passed to the next layer as an input. All weights between the hidden layers are termed parameters 

https://www.ibm.com/cloud/learn/neural-networks
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in the DNN. The concept of “learning” is a process of updating weights associated with each 

node in the hidden layers to minimize the cost function, also known as the loss function, so that 

the learning model can accurately predict  and maximize returns  from the inputs. The number of 

nodes in each hidden layer is a hyper-parameter that must be fine-tuned as is the number of 

hidden layers in the DNN. 

As mentioned before, the parameters in the DNN are randomly selected by initialization. 

How does the model learn from the inputs? No matter what models of machine learning one 

uses, one must have a predicted value and a target value. In deep Q-learning, the target value is 

based on observation of one time-step reward and the estimated optimal Q-value from the next 

state. The predicted value is the current Q-value updated by the Q-learning update equation. The 

difference between the predicted value and target value tells the performance of the current 

learning model. Gradient descent is the most commonly used method to find an improving 

direction to lower the loss function and this process is called forward propagation, while back 

propagation is used to update the weights in the network based on the loss function and the 

weights. 

The process of solving Q-learning with the DQN approximation has the following steps: 

 

Figure 3.3-3.  Algorithm: Q-learning with DQN 
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3.4 Deep Q-learning Variations 

Although deep Q-learning has achieved promising results for many applications, it may 

be unable to converge when implementing a neural network (McClelland et al., 1995). Two main 

reasons can lead to this issue. 

First, we use a transition, (𝑠𝑡,𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), in the deep Q-learning mentioned earlier to 

train the model. Successive transitions can be correlated with each other and hence make the 

model update highly correlated. Second, every time one transition is used to update the model, it 

will be discarded and will never be used again. Experiments have shown that using consecutive 

transitions without any improvement to train the DQN can  result in inefficient training 

regardless of training time. Therefore, experience replay was introduced (Lin, 1992). 

3.4.1 Experience Replay 

The purpose of implementing experience replay is to reduce the impact of correlated 

transitions for the training process. To implement experience replay, a data structure which is a 

list of tuples (past transitions), termed a replay buffer, is used. The size of the replay buffer, 𝑁, is 

a hyper-parameter that must be tuned and cannot be trained by the learning model. 

The replay buffer stores 𝑁 past transitions, a tuple of (𝑠𝑡,𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) called experience 𝑒𝑡. 

The model will not begin the training until the replay buffer is filled with past experiences with 

the size 𝑁. A minibatch (certain number of experiences), termed batch size, will be randomly 

and uniformly selected from the replay buffer to train the model. The chosen experiences are 

equally important in terms of improving the model. To maintain the size of the replay buffer, the 

oldest experiences are replaced by the latest ones. 

3.4.2 Target network 

Another known limitation of the DQN is overestimating the Q-value (Van Hasselt et al., 

2016). Recall the TD target in DQN is defined by: 

𝑦𝑡 = 𝑟𝑡 + 𝛾max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃) 

The TD target is partly based on the observation 𝑟𝑡 and partly on the estimate of DQN for 

the state at the next time step. Since we always choose an action to maximize the Q-value, the 

model will overestimate the TD target and hence overestimate the Q-value overall. To solve this 

issue, the concept of the target network was proposed (Mnih et al., 2015). Instead of using the 

DQN parametrized by 𝜃, to calculate the TD target, the target network uses another DQN with 

parameter 𝜃−, which will be fixed in a certain amount of time steps for the agent to have a fixed 

target to learn from. The target network will be updated every 𝐶 time steps, a hyper-parameter. 

The loss function associated with implementing the target network can be defined as  follows to 

minimize the mean square error: 

𝐿𝑡(𝜃𝑡) =  𝐸[(𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡
−) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡))2] 
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Gradient descent is the common method to reduce the loss function by following the 

direction of the derivative of the loss function with respect to 𝜃𝑡: 

𝜕𝐿𝑡(𝜃𝑡)

𝜕𝜃𝑡
= −𝐸[(𝑟𝑡 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡

−))
𝜕𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡)

𝜕𝜃𝑡
] 

With the combination of experience replay as mentioned earlier, random samples from 

the replay buffer will be extracted to update the DQN parameter, termed stochastic gradient 

descent to break the correlation of successive experiences. 

3.5 Summary 

The DQN with experience replay and target network was introduced by Minh (2015) and 

will be adopted to train the traffic signal controller for the single intersection scenario in this 

research.  

The pseudocode of the algorithm used in this dissertation is listed below: 
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Figure 3.5-1.  Algorithm: Deep Q-learning with Experience Replay and Target Network 
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Chapter 4.  Simulation Preparation 

4.1 Overview 

Simulation is a primary method by which municipal traffic engineers establish 

confidence in innovative traffic signal timing concepts. This confidence is ordinarily established 

by characterizing the field network, collecting traffic demand data and testing potential signal 

retiming policies to analyze network performance (e.g., average vehicle delay). In recent years, 

as the development of reinforcement learning methods has evolved, a goal-oriented machine 

learning process can be applied decreasing analysis effort. AI traffic signal controllers have been 

studied and a variety of control techniques have been tested through traffic simulations.  

The core concept of reinforcement learning algorithms is to explore the relationship 

between the agent’s actions and its evolving environment by trial-and-error methods. Feedback 

from the environment measured by so-called rewards can help the agent adjust its behavior so as 

to achieve more rewards in the future.  

The next generation traffic signal control system is far from the field application since 

many aspects, including traffic incidents, have not been tested thoroughly. One major reason is 

that collecting field network data associated with traffic incidents and validating the proposed 

models are expensive and time-consuming. For example, collecting historical traffic incident 

characterizations and emergency vehicle response data are rarely feasible for most researchers, 

who might want to focus more on the development of traffic signal retiming.  

The agent can learn from interaction with the environment regarding impacts of traffic 

incidents in the network. However, a large amount of experience is required to enable  the agent 

to optimally respond to all possible incident situations so implementation of  an AI traffic signal 

without sufficient experience would be disastrous. An implemented AI traffic signal should 

perform at least better than existing signal timing plans with/without traffic incidents.  

A more inexpensive and practically feasible traffic simulation tool with traffic 

incident/response and AI signal control module would be helpful in promoting a smarter more 

robust traffic signal control system. Therefore, we provide a Python extension based on SUMO 

to allow micro-simulation of an AI signal control system in a network experiencing incidents 

randomized in both time and space.  

We begin by highlighting some existing efforts in developing the next generation traffic 

signal control systems and available simulation software with traffic incident/response 

capabilities. This is followed by the extraordinary features of SUMO and the framework we used 

to extend SUMO with a traffic incident/response module coded in Python. Experiments are 

presented to show the use of the extended module. 

4.2 Literature Review 

Traffic signal retiming plays a significant role in improving the network performance 

when traffic incidents occur. Due to the complicated inputs and short period of time for making 

decisions, traffic simulations have been commonly adopted to test potential traffic signal 
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retiming policies before field implementation. Liu and Hall proposed a Windows operating 

system-based computer simulation software for simulating highway traffic incidents as well as 

emergency vehicle dispatching (Liu and Hall, 2000). Traffic delay is the only factor considered 

in the model and queue spill back effect is not simulated. It could help researchers and 

practitioners to broadly understand the impact of traffic incidents and determine the emergency 

dispatch strategies as needed. However, there are several key limitations. It only focused on the 

highway so local networks are not simulated. Users cannot simulate traffic signals in the 

software, which limits the usage of this simulation tool.  

Kaan and Bartin developed a complete traffic incident simulation tool in Siman language 

to generate incidents in the network and to send emergency vehicles to respond accordingly 

(Kaan and Bartin, 2003). Real network and real-world data were collected to test their proposed 

simulation tool. This work allows users to implement different TIM strategies to reduce the 

impact of traffic incidents in the network. However, the programming language Siman is rarely 

used in the data scientist and machine learning modeling field these days since most of the 

advanced machine learning methods are written in Python. It will prevent users from effectively 

testing their TIM strategies which will include the latest machine learning technologies.  

Ozbay et al. proposed Rutgers Incident Management System (RIMS) to simulate traffic 

incidents and to test various incident response strategies based on the cell transmission model 

developed by Daganzo (Ozbay et al., 2009). The results indicate that computer simulation 

methods could significantly reduce the traffic delay triggered by a traffic incident in the network. 

However, this tool lacks traffic signal timing, limiting the usage of it.  

Huang and Pan proposed to use a GIS engine to facilitate traffic incident and incident 

response optimization management. The idea was tested with real cases and commercial traffic 

simulation software (Huang and Pan, 2007).  

Wirtz et al. proposed a simulation-based method to test traffic incident management 

strategies in Visual Interactive System for Transport Algorithms (VISTA), a dynamic traffic 

assignment (DTA) embedded tool (Wirtz et al., 2005). The DTA offers the opportunity for 

modelers to accurately estimate the impact of the traffic incidents by considering the dynamic 

change of road capacity and link travel time, where the static traffic assignment models fail to 

perform. Network and traffic demand were extracted from the Chicago Area Transportation 

Study and various incidents in terms of locations and durations were simulated around I-94. 

Eleven surrounding traffic signals were manually adjusted based on Webster's formula to split 

the green time to accommodate the changed traffic flow pattern once the incident occurs. 

Incident response actions of closure of a certain number of ramps upstream of the incident 

locations were analyzed to find the best traffic delay alleviation strategies. The idea of this 

research is to preplan the traffic incident management strategies and take corresponding incident 

response actions once the incident occurs. This method might be helpful when the incident 

locations are fixed and traffic demand patterns could be predicted. However, in reality, due to the 

complexity of the network and scale of inputs, including traffic demand, network characteristics, 

and existing traffic signal control methods, it is hard to find the optimal traffic incident strategies 

within a short period of time without human interactions.  
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Reinforcement learning methods have been adopted in the field of traffic signal retiming. 

The main advantage of the reinforcement learning methods is to allow use of deep neural 

networks to perform approximation of inputs from the environment and estimate cumulative 

long-term expected rewards with a model-free method. To achieve the accuracy of high-level 

function approximation, large amounts of data need to be prepared.  

Common limitations of existing traffic incident simulation tools are: 

• The tools have not been maintained and published so that other users find it hard 

to replicate the experiments or design new experiments to test traffic signal 

control strategies. A free and open-source simulation software is needed. 

• The existing tools are not able to generate a test network and associated traffic 

demand so as to minimize the costs of preparing the base scenario. Most existing 

experiments use a single or multiple real data points to simulate the traffic 

incident environment. This scale of inputs is not enough to train the machine 

learning models.   

• The functions in the existing tools are not comprehensive enough to test proposed 

strategies from different angles, including vehicle rerouting and traffic signal 

retiming.  

• The existing tools are not available for multi-cross platforms, preventing the use 

of high-performance computing advantages these days.  

• The simulation environment is closed, meaning it is hard for the users to 

customize and extend.  

• Measurement of Effectivenesses (MOEs) are limited and do not catch up with the 

network performance measurement nowadays when vehicle emission and fuel 

consumptions are required to be considered.  

• Manually generating test networks, traffic demand, and incident occurrence is not 

efficient for training machine learning algorithms for traffic signal retiming. 

There is a need for a simulation testbed that incorporates the traffic signal retiming and 

traffic incidents/response system to develop a more robust AI traffic signal control system. The 

purpose of this work is to provide a highly automated process to generate random traffic 

incidents in the given network as well as the corresponding emergency service vehicles as an 

extension based on the existing popular microscopic traffic simulation software SUMO. Key 

components in the extension include random traffic incident generation, traffic incident 

detection, emergency service vehicle generation, and emergency service vehicle dispatching. By 

conducting simulations in this kind of setting, new traffic signal control methods considering the 

traffic incident impact in the network can be tested and tuned as preparation for field application. 

4.3 Simulation Platform 

SUMO simulation requires at least two files, including a network file and a route file. 

The network file defines the road network, including intersections, edges, and connection rules. 

The traffic signals can be also included in the network file. There are several common types of 

traffic signals provided in SUMO, including pretimed, actuated, adaptive, and other more 
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advanced (self-organized traffic signals) control frameworks. Detectors are also provided with 

the user's definition, including loop, area detector, etc. Users can also customize the traffic 

control algorithms as needed, including the reinforcement learning traffic signal control methods. 

4.3.1 Network 

Another benefit of using SUMO is that it provides a network generation library 

(NETGENERATE) so that users can easily build a grid-like network. This library allows users to 

determine the number of intersections in horizontal and vertical directions in the network. Users 

can also choose the number of lanes and length of each approach for each intersection.  

Pretimed traffic signals can also be added to the target intersections in the network. The 

tool provides a way to set up the cycle length, left turn protection phases, green split, yellow 

time, and all red time durations to mimic the practical applications as needed. 

4.3.2 Traffic Demand 

SUMO provides another important and useful Python script to prepare traffic demand 

randomly based on the developed network if users cannot get access to any trip information of 

the network. It is convenient to the users who focus on evaluating a more generalized traffic 

signal control algorithm so they do not have to spend time collecting field data. The tool allows 

users to set the ratio of internal and external traffic demand as needed. In this study, we assume 

that all traffic demand is external traffic so the ratio between the through and internal traffic 

demand is set to an extremely large integer, meaning all the traffic is starting and ending from 

the fringe of the network. The trip table will be saved into a XML file so the experiments can be 

repeated. 

Another commonly used way in SUMO to generate the traffic demand is to dynamically 

add vehicles to the system. The problem with this method is that the generated traffic will 

calculate the shortest path in the network dynamically so it might be able to detour around the 

incident location and hence decrease the traffic impact.  

In order to isolate the impact of traffic signal retiming provided by the AI traffic signal 

agent, we need to lock the traffic routes so that when there is a traffic incident in the system, the 

traffic would not shift routes. This is not the case in reality where travelers would shift routes to 

avoid being stuck in a long queue in the network. However, we assume that no travelers would 

change routes for two reasons. First, the benefits of optimizing the signal plan based on the AI 

traffic signal agent need to be calculated. If the travelers are allowed to shift routes, the net 

benefits of signal plan optimization are difficult to quantify. The other reason is the ratio of 

travelers who shift routes and remain on the original ones relate to the traffic demand pattern and 

characteristics of intersections, which are hard to quantify for this research.   

The same thing should not happen to the traffic demand generated later after the incident 

time. Therefore, this paper decided to use the first method mentioned above and edit the original 

traffic demand file (XML format) to add traffic incidents, including incident locations, incident 

durations, and emergency vehicle response. 
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4.3.3 Incident Generation 

SUMO provides three methods to simulate traffic incidents in the network: 1. Stop a car 

at a designated location for a specific period; 2. Reduce the road capacity of associated edges; 3. 

Reduce the design speed of the associated road edges. The easiest and more realistic manner is 

the first one since it will require the route file to be edited with one line of code to reflect the stop 

of an incident vehicle. Figure 4.3-1 shows the added traffic incident information in the route file. 

In this example, the vehicle with ID 2 will stop at Lane “C2C1_1” 20 meters from the end of this 

lane for 1500 seconds. 

 

 

Figure 4.3-1. Settings of Stopping Vehicle in Route File 

4.3.4 Emergency Service Vehicles Simulation in Sumo 

In addition to the incident vehicle generation, we also provide a way to generate 

emergency service vehicles in the simulation once the traffic incident is detected.  

During normal traffic movement, no vehicle will stop at a location for a long period of 

time, a user-defined time threshold (e.g., 5 minutes). Once the system has detected that a vehicle 

is stuck in the network for more than a specific period of time, the emergency service vehicles 

will be generated and dispatched. Users can choose the number of emergency service vehicles to 

reflect the reality process, such as multiple police cars and EMS vehicles.  

We can generate multiple individual vehicles to mimic the police and EMS vehicles, but 

the problem of this is some of the vehicles might not be able to reach the incident location due to 

associated traffic congestion. To overcome this issue, we decided to edit the emergency vehicle 

length to mimic multiple emergency service vehicles being needed.  

The default length of per emergency service vehicle is 7.5 meters, including 5 meters for 

the vehicle length and 2.5 meters for the clear space. For example, if 3 police cars and 1 EMS 

vehicle are required to deal with a traffic incident, that is a total of 4 emergency service vehicles, 

a vehicle with length of 30 meters,  will be generated and dispatched in the simulation and hence 

it will block 30 meters of the incident lane to reflect the combination impact of multiple 

emergency services vehicles in practice.  

In SUMO, there are several important concepts of network components. Edge defines the 

approach of the intersection. Edge includes a certain number of lanes. The lanes are named based 

on the edgeID and lane index.  

The route of the emergency service vehicle is defined before dispatching it into the 

network. To generalize the implementation of emergency vehicle response, we randomly select 

an origin for its route from the fringe of the network. The destination of the route is the incident 
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edge. During the incident response service, the emergency vehicle will occupy the lane next to 

the incident vehicle. For example, if the incident vehicle stops at the middle lane of an edge and 

there are 3 lanes for this edge, the emergency service vehicle will randomly stop in either the 

first (straight and right turn lane) or the third lane (left turn lane in our experiment) of the same 

edge.  

The emergency vehicle will arrive at the incident location after the incident vehicle has 

been detected and the travel time from its origin to the incident location. And then the emergency 

service vehicle will stop for the same duration as the incident vehicle stops. Once the emergency 

service vehicle completes its service it will finish its route and reach the intersection of the 

destination edge. 

In Traci, the function to generate a route based on the origin and destination edges is 

traci.simulation.findRoute(origin_edge, destination_edge). Once the two parameters are given, 

the function will find a feasible and probably the shortest route in the network. The route 

information could be called to show the edges used in this route by calling the route.edges 

property.  

To dispatch the emergency service vehicle in the system, the function 

traci.route.add(routeID, route_edges) needs to be called to add the edges of the emergency 

service vehicle route into the route file. The emergency service vehicle then can be added to the 

route file by calling traci.vehicle.setStop(vehicle_id, route_edges, stop_lane_index, 

stop_duration). Users can customize the traffic signal to allow emergency service vehicle priority 

so that it can arrive at the incident location as quickly as possible.  

For a two-lane edge, the whole edge will be blocked by both the incident car and 

emergency service vehicle, while for a three or more-lane edge, two lanes will be blocked and its 

capacity will be reduced significantly. We examined the impact of only considering the incident 

vehicle without the emergency service vehicle in the system and the delay impact is significantly 

different, showing that having the emergency service vehicle in the system should be more 

realistic. The pseudo code for the simulation is shown in Figure 4.3-2.  

 

Figure 4.3-2. Pseudocode for the Simulation Framework 
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4.4 Simulation Procedure 

Once the network and traffic demand are prepared, the customized incident Python script 

will read the route XML and randomly select a vehicle to generate a traffic incident. Then the 

simulation starts and once the incident vehicle is detected in the network stopping for more than 

5 minutes (a user defined threshold), emergency service vehicles will be generated by calling 

DISPATCH_EMERGENCY_VEHICLE() function. The default color of the emergency vehicle 

is set to be blue and the length of it is determined by the number of emergency service vehicles 

needed for this incident multiplied by 7.5 meters. Therefore, the incident vehicle will be shown 

in red and the emergency service vehicle will be shown in blue when viewing the animation of 

the simulation process. 

The developed incident generation and emergency service vehicle response Python script 

is published in the following GitHub repository.  The Networks directory includes a 4x4 grid 

network generated by calling the NETGENERATE command aforementioned, as shown in 

Figure 4.4-1. The main functions of incident generating and emergency service vehicle response 

are in incidentRoute.py located in the root directory of this GitHub repository.  

 

Figure 4.4-1. 4x4 Grid Network with Traffic Incident 

https://github.com/Flexing920/dissertation/tree/main/tests/tl/dissertation
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Figure 4.4-2. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles 

In Figure 4.4-1, the 4x4 grid network is shown as well as the incident vehicle and 

emergency service vehicle. Figure 4.4-2 shows a larger view of the incident vehicle (RED) and 

emergency service vehicle (BLUE).  

The current Python script is for single traffic incident preparation. Users could extend it 

to include multiple incidents as needed. 

4.5 Implementation 

A 4x4 grid network can be created by running the NETGENERATE module provided by 

SUMO to generate a grid-like network with user settings. All the parameters as well as their 

meaning can be found in Appendix 1. 

Traffic demand associated with the 4x4 grid network can be prepared by running the trip 

generating Python script in SUMO. Some of the key parameters that users can define include the 

ratio of internal and external trips, hourly traffic flow, and turning ratios. The commands used in 

this paper can be found in Appendix 2 as well as the explanation of the parameters.  

Traffic demands are all external traffic, meaning the origins and destinations of all trips 

are at the network fringe.  

Intersections are all controlled by pretimed traffic signals with 4 phases, including east-

west straight movement phase, east-west left turn phase, north-south straight movement phase, 

and north-south left turn movement phase. Right turn movement is allowed and included in the 

straight movement phases. Cycle time for every intersection is the same, 90 seconds. The cycle is 

split 50%-50% between the east-west and north-south directions with the straight/right 

movement receiving 27 seconds and the left turn phase receiving 13 seconds with both yellow 

clearance intervals 3 seconds and 2 second all reds. More traffic signal setting information could 

be found in the network file.  
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To add random incidents in the created network, the python script must be called. Several 

inputs need to be defined before calling the extension, Including the network XML file provided 

by the NETEDIT function, the traffic demand XML file produced by calling the randomTrip.py 

tool provided by SUMO, and the corresponding SUMO configuration file.  

The traffic incident will be generated before the simulation starts by randomly selecting a 

vehicle from the first one third of the simulation period. The vehicle must have a route crossing 

the center of the network so that the stopped lane is not located in the fringe of the network to 

prevent vehicles from entering the network. The traffic incident will last for a random period of 

time from 15 minutes to 30 minutes with a 5-minute increment. Once the vehicle reaches the 

incident location, it will fully stop and block the traffic behind. 

The traffic simulation system will record all vehicles' stop duration in the network. Once 

it detects one vehicle stopped for more than 5 minutes (a tunable parameter) in the same location, 

it assumes a traffic incident exists. 

A number of emergency medical service and police cars will be generated as a single 

long length vehicle to abstract their impact. The origin of this emergency vehicle will be a 

random location along the network fringe and its destination is the incident location. The 

emergency vehicle will be stopped for the same amount of time as the incident vehicle . For a 

two-lane edge, the incident vehicle and emergency vehicle will fully block the road. 

The extension could be customized easily if multiple incidents are required for any 

scenario. 

4.6 Summary 

This work provides a convenient Python script for SUMO extension. Rather than only 

considering the traffic incident impact in the network, this research also provides a way to 

simulate the emergency service vehicle impact in the network. As shown in the experiment 

results, the combination impact of traffic incidents and corresponding emergency service vehicle 

response could cause significantly more delays than only considering the traffic incident itself in 

the network. This tool will help researchers to provide more realistic traffic incident management 

strategies to reduce the impact of traffic incidents and optimize the traffic management methods, 

including vehicle rerouting and traffic signal retiming.  
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Chapter 5.  Single Intersection Deep Reinforcement Learning Traffic 

Signal Control 

5.1 Overview 

This chapter employs the proposed deep reinforcement learning signal control algorithm 

to a single intersection simulation scenario, highlighting the potential advantages of using deep 

Q-learning for the traffic signal controller problem. Additionally, to assess the performance of 

the proposed algorithm, we compare it against three traditional non-learning traffic signal control 

algorithms, including Max-pressure, Webster's, and Uniform. To evaluate the effectiveness of 

the traffic signal controllers, we utilize measures of effectiveness (MoEs) such as system travel 

time, queue length distribution, and delay distribution of vehicles during the simulation. 

The subsequent sections of this chapter are structured as follows. The second section 

provides an introduction to the deep Q-learning algorithm, which is utilized along with three 

traditional non-learning traffic signal controllers. The simulation platform settings and code 

preparation are then detailed. In the Results section, a comprehensive analysis is conducted to 

compare the performance of the learning and non-learning traffic signal control algorithms. The 

final section provides a discussion and concluding remarks on the applicability of the deep Q-

learning algorithm to the single intersection scenario.  

5.2 Deep Q-Learning Model 

As Chapter 3 explains, Q-learning is a type of reinforcement learning that does not rely 

on a pre-existing model and allows for learning the value of actions in a given state. In certain 

situations, a Q-table can be used to explore all possible state and action combinations, allowing 

the agent to develop a coherent policy that maximizes cumulative rewards once the model has 

reached convergence. However, for traffic signal control problems, where the number of states 

and action pairs is exceptionally large, a Q-table may not be practical.  

To provide an example, let's consider a single intersection where the number of states and 

action pairs is dependent on factors such as the number of vehicles in each lane, the number of 

lanes per approach, the capacity of each lane, and the signal phasing patterns. When dealing with 

multiple intersections, it is preferable to have an optimized system solution. Instead of obtaining 

actual rewards for each state-action pair, we can use a deep neural network (DNN) to estimate 

the performance of an action in a given state. This combination of Q-learning and DNN is called 

the deep Q-network (DQN). In this section, we will introduce our DQN, which includes defining 

the state, action, and reward, as well as specifying the DNN and associated hyperparameters. 

The key components of reinforcement learning are: 

• Agent: The entity that interacts with the environment and learns to take actions 

based on the observed states to maximize the reward. 

• Environment: The external world in which the agent interacts and receives 

feedback in the form of rewards. 

• State: The current configuration of the environment that the agent observes. 
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• Action: The decision made by the agent to transition from one state to another. 

• Reward: The feedback signal that the agent receives from the environment after 

taking an action. The reward represents the immediate benefit or cost of the action 

taken by the agent. 

• Policy: The strategy that the agent uses to determine its actions based on the 

current state of the environment. 

5.2.1 Agent 

In machine learning, an agent is an entity that interacts with an environment to achieve a 

specific goal. The agent can receive observations or data from the environment, take actions 

based on that information, and receive feedback or rewards that indicate how well it is achieving 

its goal. The agent's objective is typically to learn a policy, which is a mapping from 

observations to actions, that maximizes its long-term cumulative reward in the environment. 

Agents can be implemented using a variety of techniques, including reinforcement learning, 

supervised learning, and unsupervised learning, depending on the nature of the task and the 

available data. 

The traffic signal controller is represented as the agent in DQN, which aims to achieve 

the maximum cumulative reward by interacting with the intersection and traffic demand through 

its learned policy. 

5.2.2 Environment 

The environment comprises everything except the agent, such as the geometry of the 

intersection, vehicle arrival rate, queue lengths, delay, and other factors that are beyond the 

agent's control. In our case, the intersection and its characteristics serve as the environment that 

the agent interacts with during the learning process. 

5.2.3 State 

The inputs in DQN are represented by the state, denoted as 𝑠𝑡, which belongs to the state 

space 𝑆 and 𝑡 ∈ 𝑇, where 𝑇 represent the time period for the learning process. 𝑇 is fixed in our 

experiment for the single, isolated intersection, meaning our learning process is a finite Markov 

decision process.  

A suitable state must capture the essential features of the environment. In DQN, the state 

should include essential information from the intersection that the traffic signal controller can 

learn to improve its policy. Common measures used for state representation in traffic signal 

control include queue length, queue density, delay, vehicle waiting time, and their variations and 

combinations. Some more advanced states can be represented by the image of the intersection 

with vehicle positions which allows the model to extract information that humans might not be 

able to detect. However, more advanced and complicated inputs are difficult to obtain in 

practice.  

By considering the complexity and ease of implementation of algorithms in practice, we 

choose normalized density of each lane (both incoming and outgoing), normalized queue length 
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of each lane (for both incoming and outgoing), and the most recent green phase as the state. The 

reason for normalizing the density and queue is to constrain the value to the range between 0 to 

1. The normalized values for the inputs of machine learning models will generally decrease the 

training time to get the model converged (Goodfellow et. al, 2018). 

Normalized density, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙∈𝐿, is defined by the ratio between total vehicles and lane 

capacity, where 𝑙 denotes the lane and 𝐿 represents a set of all incoming and outgoting lanes 

associated with the intersection. Normalized queue, 𝑞𝑢𝑒𝑢𝑒𝑙∈𝐿, is calculated as the ratio between 

the number of stopped vehicles and lane capacity. One-hot encoding of the most recent green 

phase is applied, plus the all red phases. 

To summarize, the state in our single intersection case can be defined as below: 

𝑠𝑡 = [𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙1
, … , 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑛

, 𝑞𝑢𝑒𝑢𝑒𝑙1
, … , 𝑞𝑢𝑒𝑢𝑒𝑙𝑛

, 𝑝ℎ𝑎𝑠𝑒1, … , 𝑝ℎ𝑎𝑠𝑒𝑚] 

Where 𝑛 denotes the number of incoming and outgoing lanes and 𝑚 represents the total 

number of green phases and one all red phase, subject to 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙 ∈ [0, 1], 𝑞𝑢𝑒𝑢𝑒𝑙 ∈ [0, 1], 
𝑝ℎ𝑎𝑠𝑒𝑖 = [0, 1], and ∑ 𝑝ℎ𝑎𝑠𝑒𝑖 = 1𝑚 . 

5.2.4 Action 

Action is defined as the choices that the agent can make and hence it is the phases that 

can be selected in our single intersection scenario. Action is represented by 𝑎𝑡 ∈ 𝐴, where 𝑎𝑡 

denotes the action being chosen at time 𝑡 and action space 𝐴 is a set of all selectable phases 

(green phases and the all red phase). We have four green phases in our single intersection 

scenario, including East-West straight movement green phase with unprotected left-turn green 

(𝑝ℎ𝑎𝑠𝑒𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡−𝐸𝑊), North-South straight movement green phase with unprotected left-turn 

green (𝑝ℎ𝑎𝑠𝑒𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡−𝑁𝑆), East-West protected left-turn green phase (𝑝ℎ𝑎𝑠𝑒𝐸𝑊−𝑙𝑒𝑓𝑡−𝑡𝑢𝑟𝑛), and 

North-South protected left-turn green phase (𝑝ℎ𝑎𝑠𝑒𝑁𝑆−𝑙𝑒𝑓𝑡−𝑡𝑢𝑟𝑛).  

Since we randomly generate demand for the experiment including random ODs, we 

include two protected left-turn phases into the action space. For regular cyclic traffic signal 

controllers, the pattern will be fixed so left-turn green phases will be applied, while for the DQN 

and Max-pressure controllers, left-turn phases might be less used due to the traffic pattern.  

In the DQN mode, each chosen phase will be up for at least 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If the next 

chosen phase is the same, it extends the current phase by adding another 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If a 

different phase is selected, the corresponding amber phase will be chosen and hence all red time 

thereafter, where 𝑡𝑦𝑒𝑙𝑙𝑜𝑤 = 3 seconds and 𝑡𝑟𝑒𝑑 = 2 seconds are fixed. 

5.2.5 Reward 

Reward at time 𝑡, 𝑟𝑡, serves as a numeric signal to train the DQN so the agent can 

quantify its action given a state and improve its performance by choosing the right action for 

maximizing long-term value measured by the reward. 
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As summarized in Chapter 2, commonly used reward representations include total delay 

and its variation, total stops, total queue length and its variation, and some combinations of those 

measurements. A number of research efforts have chosen total delay or its variation as the 

reward based on the assumption that ultimately, the system level performance will be measured 

by the total delay, so using the same measurements as the reward will directly guide the agent to 

improve its performance.  

However, total delay requires knowing each driver’s desired speed and their actual speed 

through the network so that the difference could represent total delay.  Taking into account this 

obstacle when implementing the DQN algorithm, we use a queue related reward in our model. 

There are multiple forms of using queue length as the reward representation, and we use the 

quadratic form of queue difference between each incoming lane and outgoing lane, as shown 

below: 

𝑟𝑡 = ∑ 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡−1,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖

2

𝑛

− ∑ 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖

2

𝑛

 

𝑇ℎ𝑒 𝑡𝑒𝑟𝑚 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖
 denotes the number of vehicles stopping in 𝑖𝑡ℎ 

incoming lane. The quadratic form is used to penalize the long queues to avoid having unfair 

phase selection for those vehicles from the minor demand approaches. We also use the previous 

sum of squared queue length minus the current one so if an action reduces the value, the reward 

is positive and vice versa.  

The goal of the agent is to maximize the cumulative rewards, defined by the following 

formula: 

𝑅 = 𝑚𝑎𝑥 ∑ 𝑟𝑖

𝑇

𝑡=0

 

5.2.6 Policy 

A policy is a function that maps the current state of an agent to an action to be taken by 

that agent. The policy defines the agent's behavior and determines what actions the agent should 

take in response to the environment. 

There are two main types of policies in reinforcement learning: deterministic policies and 

stochastic policies. A deterministic policy maps each state to a single action. For example, a 

deterministic policy might always output "move forward" when the agent is in a certain state. A 

stochastic policy, on the other hand, maps each state to a probability distribution over actions. 

For example, a stochastic policy might output a probability of 0.7 for "move forward" and a 

probability of 0.3 for "turn left" when the agent is in a certain state. The agent then selects an 

action according to the probabilities given by the policy. 

The goal of reinforcement learning is to learn an optimal policy that maximizes the 

agent's long-term reward. This is typically done by using a trial-and-error approach, where the 

agent explores the environment and updates its policy based on the observed rewards. In our 
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case, the policy represents the weights, 𝜃, of the DNN which will help to choose an action based 

on a given state to maximize the cumulative rewards. Once the learning process is done, we can 

use the value saved in 𝜃 to approximately calculate the best actions we should choose given a 

state. For every step, if we follow this guidance, we will maximize cumulative rewards and 

hence find the best policy to choose a phase given a state. 

5.2.7 DNN Structure 

A deep neural network (DNN) is a type of artificial neural network (ANN) that is 

designed to model complex relationships between inputs and outputs by using multiple layers of 

processing nodes, or neurons, to learn hierarchical representations of the data. DNNs are 

composed of layers of interconnected nodes, with each node in a layer receiving input from the 

previous layer and outputting to the next layer. The nodes use nonlinear activation functions to 

transform their inputs and create a nonlinear relationship between the inputs and outputs. By 

stacking multiple layers of these nodes, a DNN can learn to extract increasingly abstract and 

complex features from the input data. DNNs have been applied successfully in a wide range of 

machine learning applications, including image and speech recognition, natural language 

processing, and reinforcement learning. 

DNNs consist of multiple layers of interconnected neurons that perform increasingly 

complex transformations on the input data. Common layers in DNNs include: 

• Input Layer: The input layer receives input data and passes it to the next layer in 

the network. It typically does not perform any computation on the input. In our 

case, this is defined by the inputs collected from the intersection and can be used 

by the controller to learn. 

• Hidden Layers: Hidden layers process the input data and perform non-linear 

transformations to extract features and learn patterns in the data. The number of 

hidden layers and the number of neurons in each layer can vary depending on the 

complexity of the problem being solved. This will help the controller to analyze 

the inputs collected from the intersection for various patterns to facilitate the 

learning process. 

• Output Layer: The output layer produces the final output of the network. The 

number of neurons in the output layer depends on the task being performed. For 

example, in a binary classification task, the output layer would have a single 

neuron, whereas in a multi-class classification task, the output layer would have 

multiple neurons. This will form a list of phases with its estimated value from the 

model to determine which phase has the maximum cumulative rewards to be 

chosen for the next phase if exploitation is applied. Otherwise, a random phase 

will be chosen for the next phase. 

A deep neural network represents a neural network structure with one input layer, one 

output layer, and multiple middle layers, called hidden layers. The size of the input layer is the 

same as the size of the state. The size of the output layer is equal to the number of actions in the 
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action space, which is 4, the number of green phases in our model. The size of the hidden layers 

is determined by the number of layers and number of nodes for each layer. The number of nodes 

for each layer is fixed to be 64. The number of layers is a hyperparameter which will be tuned. 

Every layer is fully connected, meaning each node will be passed as an input for the next 

layer. Each connection between two nodes is represented by a single value in our DNN 

parameter, 𝜃. Each node can be seen as a multiple regression model that includes all the node 

values from the previous layer and is weighted by the parameters in 𝜃 corresponding to this 

layer. The weighted sum will be reculated by the chosen activation function. 

The activation function is a mathematical function that introduces non-linearity to the 

output of a neuron. It determines the output of a neuron based on the weighted sum of its inputs. 

Some common activation functions used in ANNs include: 

• Sigmoid function: The sigmoid function maps any input value to a value between 

0 and 1, making it useful for binary classification problems. However, it suffers 

from the vanishing gradient problem, which can make training deep networks 

difficult. 

• ReLU function: The rectified linear unit (ReLU) function outputs the input 

directly if it is positive, and outputs 0 if the input is negative. ReLU has become a 

popular choice in deep learning due to its simplicity and ability to avoid the 

vanishing gradient problem. 

• Tanh function: The hyperbolic tangent (tanh) function maps input values to a 

range between -1 and 1, making it useful for regression problems. It is similar to 

the sigmoid function but has a steeper gradient, which can improve the 

convergence of the training process. 

• Softmax function: The softmax function is commonly used in the output layer of a 

neural network to produce probabilities for each class in a multi-class 

classification problem. It ensures that the output probabilities sum to 1.0. 

In our case, ReLU function is applied to be the activation function for each hidden layer. 

Q-learning is a well-known reinforcement learning algorithm that is used to find an 

optimal policy for an agent in an environment by learning the action-value function. However, 

traditional Q-learning can face limitations when dealing with high-dimensional state and action 

spaces. 

DNNs, on the other hand, are very good at approximating complex non-linear functions, 

making them a powerful tool for function approximation in reinforcement learning problems 

with high-dimensional state and action spaces. 

By combining Q-learning with DNNs, we can approximate the action-value function with 

a deep neural network, a technique known as the deep Q-network (DQN). The DQN algorithm 

can learn directly from raw high-dimensional sensory inputs, such as images, without requiring a 
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manual feature extraction step. This can greatly simplify the design process, and enable the agent 

to automatically learn and extract relevant features from the environment. 

Overall, DQN, combining Q-learning with DNNs, can lead to better performance and 

more efficient learning in complex reinforcement learning tasks with high-dimensional state and 

action spaces. 

5.3 Variations of DQN 

One of the limitations of DQN is its susceptibility to overestimation of Q-values, 

especially in the presence of noisy data. This can occur when the DNN overgeneralizes from the 

limited training data, resulting in overestimation of Q-values for some state-action pairs. Another 

limitation is the tendency of DQN to overfocus on specific state-action pairs, leading to 

suboptimal policies. This can be addressed using various modifications to the basic DQN 

algorithm, such as experience replay, double DQN, dueling DQN, and distributional DQN, 

which aim to improve stability, reduce overestimation, and encourage exploration. Two 

advanced techniques will be used in this research to improve the performance of DQN, including 

experience replay and double DQN. 

5.3.1 Experience Replay 

Experience replay is a technique used in deep reinforcement learning to improve the 

efficiency and stability of the learning process. The basic idea is to store experiences (tuples of 

state, action, reward, next state) in a replay buffer with size 𝐵, which is essentially a large dataset 

of past experiences. During training, some of the experiences, determined by the variable called 

batch size (𝑏),  are randomly sampled from the replay buffer and used to update the deep neural 

network, instead of using only the most recent experience. This has several benefits, such as 

reducing the correlation between consecutive experiences, making the learning process more 

stable, and enabling the reuse of experiences, which can lead to more efficient use of data. 

Experience is defined as a tuple of current state, action, reward, and next state, 

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). The experiences that aid the agent in learning from its interaction with the 

environment are stored in a fixed-size memory buffer. When the buffer is full, the oldest 

experience is replaced with the newest to retain the most recent experiences. In an ideal scenario, 

all past experiences could be used to calculate the loss function for improving the model, but this 

would significantly slow down the learning process. Instead, a batch of experiences is randomly 

and uniformly selected from the buffer for updating the DQN. The size of the batch is a 

hyperparameter that requires tuning. 

5.3.2 Double DQN 

Double DQN is an extension of the original DQN algorithm that addresses the 

overestimation issue that can occur in Q-learning methods. In traditional Q-learning, the 

maximum action value for a given state is calculated using the same Q-network used to select 

actions, which can lead to overestimation of the action values. Double DQN uses two separate 

Q-networks to calculate the action values: one network is used to select actions, while the other 

is used to estimate the action values. The second network, called target network, is used to 

evaluate the action values by taking the maximum action value from the network used to select 
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actions. This approach reduces the overestimation issue that can occur in Q-learning and 

improves the stability and accuracy of the Q-values. 

Target network update refers to periodically updating the weights of a separate neural 

network, known as the target network, that is used to estimate the target Q-values in the Q-

learning update. 

During training, the Q-learning update involves calculating the target Q-value for each 

action based on the current estimate of the Q-values and the observed reward and next state. In a 

standard DQN, the same neural network is used to estimate the current Q-values and the target 

Q-values. However, this can lead to instability in the training process, since the Q-learning 

update involves using the same neural network to generate the target and the prediction, leading 

to a feedback loop. 

To address this, the target network is updated periodically (e.g., every N steps) by 

copying the weights of the current Q-network to the target network. This provides a more stable 

estimate of the target Q-values and prevents the feedback loop. The target network is not used 

for action selection during the training, only for estimating the target Q-values. 

The DQN with experience replay and target network was introduced by Minh (2015) and 

will be adopted to train the traffic signal controller for the single intersection scenario in this 

research.  

The pseudocode of the DQN with experience replay and target network algorithm used in 

this dissertation is listed below: 
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Figure 5.3-1. Algorithm: Deep Q-learning with Experience Replay and Target Network 

5.4 Non-learning Traffic Signal Control Algorithms 

To evaluate the effectiveness of the proposed DQN, we compared its performance against 

that of two traditional traffic control algorithms (Uniform and Webster's) as well as the more 

recent and advanced Max-pressure algorithm. This was done to generate similar Measures of 

Effectiveness (MoEs) and to demonstrate the performance of our proposed model.  

5.4.1 Uniform Traffic Controller 

A uniform traffic controller (UTC) is a type of traffic control system where the signal 

timing plan is fixed and does not change dynamically based on real-time traffic conditions. The 

UTC uses a pre-determined signal plan to control traffic at an intersection, which is often 

designed to provide uniform signal timings for each phase of the traffic signal cycle. This type of 

traffic control system is widely used in areas with relatively stable traffic demand patterns and 

limited traffic variations. However, UTC may not be able to adapt to sudden changes in traffic 

flow or accommodate the needs of different types of road users. As a result, more advanced and 

adaptive traffic control systems, such as actuated or intelligent traffic control systems, are being 

developed and implemented to improve traffic efficiency and safety. It is also due to this reason, 

all traffic signal controllers in this dissertation will apply the same phase patters described in the 

DQN. 
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• Here is a general procedure for implementing a uniform traffic controller: 

• Set the initial phase to be the first phase in the sequence. 

• Allocate equal green time to each phase. 

• Monitor traffic and detect when a phase has no demand. When this occurs, skip 

that phase in the sequence. 

• When all phases have been completed, return to the first phase and start the cycle 

over again. 

The only hyperparameter in UTC is green duration for each phase (we use the same green 

duration for each phase), which will be tuned with the given traffic demand. 

5.4.2 Webster’s Traffic Controller 

Webster's traffic controller, also known as the Webster method, is a type of traffic signal 

control algorithm developed by Anthony G. Webster in the 1950s. It is a fixed-time control 

method, where the green times for each phase are predetermined based on traffic flow rates and 

the geometric characteristics of the intersection. 

The Webster method assumes that the traffic flow rates are known and constant, and the 

signal timing plan is set in advance. The controller calculates the total cycle time and the 

duration of each green interval based on the traffic demands of each approach, the saturation 

flow rate, and the intersection geometry. The cycle time is the total duration of one complete 

signal sequence, while the green interval is the period of time when a particular movement is 

allowed to proceed through the intersection. 

Webster's method is relatively simple and requires minimal input data. It is widely used 

for low- to moderate-volume intersections and has been the basis for other traffic control 

methods, such as the fixed-time coordinated method. However, it may not be suitable for high-

volume intersections or complex traffic conditions, where adaptive signal control methods may 

be more effective.  

We implement an adaptive Webster’s method by collecting traffic demand through a 

fixed time interval to average the traffic demand and assume that the next interval with the same 

length will have the similar traffic demand. Therefore, the recalculated green split will be 

reasonable. 

The procedure of Webster's traffic controller can be summarized as follows: 

• Collect traffic data: Traffic volume data is collected from the intersection, 

including the number of vehicles arriving on each lane, the queue length, and the 

delay time. 

• Determine cycle time: The total cycle time for the traffic signal is determined 

based on the traffic demand and the minimum green time required for each phase. 

• Calculate green times: The green time for each phase is calculated based on the 

traffic demand and the pre-determined fixed time ratios for each phase. 
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• Implement the signal timings: The signal timings for each phase are programmed 

into the traffic signal controller, which will operate the traffic signal according to 

the pre-determined timings. 

• Monitor traffic flow: The traffic flow at the intersection is monitored to ensure 

that the traffic signal timings are effective and efficient. If necessary, the timings 

can be adjusted based on the traffic data collected. 

• Repeat the process: The above steps are repeated on a regular basis, usually daily, 

to ensure that the traffic signal timings are optimal for the current traffic demand. 

The hyperparameters in Webster’s method include minimum cycle length, maximum 

cycle length, saturation flow rate, and time interval to recalculate the green time split. All of 

these hyperparameters will be tuned to obtain the best performance of Webster’s method for the 

performance comparison with other controllers. 

5.4.3 Max-pressure Traffic Signal Controller 

Max-pressure is a traffic control algorithm that aims to maximize the flow of traffic 

through an intersection by prioritizing the lanes with the highest pressure, which is defined as the 

difference between the number of vehicles entering the lane and the number of vehicles leaving 

the lane. The Max-pressure algorithm is a decentralized control algorithm, which means that 

each lane controller makes its own decisions based on local information, without requiring 

communication or coordination with other controllers. The pressure of a particular phase is 

defined as the sum of queue length of incoming lane, 𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔, minus the queue length of 

its corresponding outgoing lane, 𝑞𝑢𝑒𝑢𝑒𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 for all the incoming lanes and outgoing lanes 

associated, as listed below. 

𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆𝒊 = ∑ 𝒒𝒖𝒆𝒖𝒆𝒊𝒏𝒄𝒐𝒎𝒊𝒏𝒈𝒍
− 𝒒𝒖𝒆𝒖𝒆𝒐𝒖𝒕𝒈𝒐𝒊𝒏𝒈𝒍

𝒍

 

As indicated by the previous equation, a phase's pressure can be negative, which implies 

that the downstream lane has a greater vehicle queue than its incoming lane. Consequently, its 

pressure value turns out to be negative, making it almost impossible to be selected. The phases 

with higher pressure are selected more frequently in order to alleviate the pressure in the system. 

In this study, the Max-pressure algorithm necessitates traffic data from the intersection's 

surroundings, particularly the length of the outgoing vehicle queue.  

The procedure of Max-pressure traffic controller can be explained below. 

• At each time step, the controller obtains the current queue length of each outgoing 

lane and calculates the pressure of each phase. The phase with the highest 

pressure value is selected as the next phase to be executed. If there are multiple 

phases with the same highest pressure value, one is selected randomly. 

• After a phase is selected, the controller assigns a green time duration for the phase 

based on a pre-defined green time ratio. The green time ratio is the proportion of 
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the total green time that a phase is assigned. The total green time is the sum of the 

green times of all selected phases in a cycle. 

• The Max-pressure controller repeats this process in each time step to ensure that 

the pressure of the system is reduced as much as possible.  

There is only one hyperparameter in Max-pressure traffic signal control and that is the 

minimum green duration for a given phase, denoted as 𝑡𝑔𝑟𝑒𝑒𝑛. The hyperparameter will be 

optimized in order to achieve the optimal performance. 

5.5 Hyperparameter Tuning 

In machine learning, there are two types of parameters: model parameters and 

hyperparameters. 

Model parameters are learned during the training process. They are the weights and 

biases that the model learns from the data to make predictions. In supervised learning, model 

parameters are updated using an optimization algorithm to minimize the difference between the 

predicted outputs and the actual outputs for a given set of input data. For example, in a linear 

regression model, the model parameters are the slope and intercept of the line that best fits the 

data. 

Hyperparameters are set by the user before training the model. They are not learned from 

the data, but they affect how the model learns the model parameters. Hyperparameters control 

aspects of the training process such as the learning rate, regularization strength, and the number 

of hidden layers in a neural network. For example, in a neural network, the model parameters are 

the weights and biases of the neurons, while the hyperparameters are the learning rate, the 

number of hidden layers, the number of neurons in each layer and the activation functions used. 

Both model parameters and hyperparameters are important in machine learning, and 

selecting the right values for both can significantly affect the performance of the trained model. 

5.5.1 Hyperparameters in DQN 

In machine learning, hyperparameters are parameters that are not learned from the data, 

but are set by the user before training the model. They are called "hyperparameters" because they 

determine how the model's parameters (which are learned from the data) will be set during the 

training process. 

Some examples of hyperparameters include: 

• Learning rate: determines how much the model weights are updated during 

training. 

• Number of hidden layers: determines how many layers are in the neural network. 

• Batch size: determines how many examples are used in each iteration of training. 

• Activation function: determines the function used to transform the input data in 

each layer. 
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Hyperparameters are typically set using trial and error or more advanced optimization 

methods such as grid search, random search, or Bayesian optimization. Selecting the right 

hyperparameters is important because it can significantly affect the performance of the trained 

model. 

There is no universal rule of determining the best combination of hyperparameters due to 

the complexity of real world environment and therefore to achieve a good machine learning 

model, hyperparameter tuning is required, although many research efforts do not even mention it. 

To our knowledge, this is the first time that a full suite of hyperparameter tuning has been 

applied to the traffic signal control problem and a detailed explanation of the process for 

applying the reinforcement learning model to traffic signal control has been provided. This 

contribution will fill this gap so other researchers and engineers who are interested in 

implementing machine learning algorithms to the traffic signal control problem can have a good 

starting point. 

Because of the large number of hyperparameters in DQN and the many potential values 

for each, it is impractical to exhaustively search for the best combination. To simplify the 

process, this research employs the commonly used method of grid search to tune the 

hyperparameters. Grid search involves testing all possible combinations of hyperparameters from 

a predetermined list, and training the model with each combination for a small fraction of the 

total training time required to achieve convergence to an acceptable level. The performance of 

each combination is then evaluated to identify the set of hyperparameters that produce the best 

preliminary results, which is used to begin the actual training process.  

It should be noted that the value of some hyperparameters may be adjusted during the 

training process. For instance, the learning rate may be decreased as the agent gains a better 

understanding of the environment and the model reaches a state where a lower learning rate may 

allow for more exploration of local areas that were not reachable with the larger learning rate. 

Table 5.5-1 lists all the tuned hyperparameters along with a brief definition for each. 

Table 5.5-1. Hyperparameters tuned in DQN 

Hyperparameters Definition 

Reinforcement Learning Related Hyper-

parameters 

 

Learning Rate To govern the pace the algorithm learns the 

parameter through previous and current 

rewards 

Discount Factor Discount the future reward so not to have an 

infinite calculation 

Temporal Difference Steps Number of steps the reward will be used to 

calculate the target q value 
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Neural Network Related Hyper-parameters  

Number of Hidden Layers Number of layers between the input layer and 

output layer 

Target Frequency Number of time steps to update the target 

neural network 

 

5.5.2 Learning Rate 

In reinforcement learning, the learning rate is a hyperparameter that determines the 

degree to which the agent's Q-values are updated based on new experiences. It controls the step 

size at which the agent updates its estimates of the optimal Q-values for each action. A small 

learning rate means the agent will change its estimates slowly, while a large learning rate means 

it will update them more quickly. 

The learning rate is typically set to a small value (e.g., 0.1 or 0.01) to ensure the agent 

learns gradually and avoids overfitting to specific experiences. However, the optimal learning 

rate can depend on the specific environment and problem being tackled, so it is often a 

hyperparameter that needs to be tuned through experimentation.  

Based on the existing research on single intersection, we select three values for the 

learning rate to be tuned, including , 10−3, 10−4,  and 10−5. 

5.5.3 Discount Factor 

In reinforcement learning, the discount factor is a parameter that determines the 

importance of future rewards in an agent's decision-making process. 

The discount factor, denoted by γ (gamma), is a value between 0 and 1 that represents 

how much an agent values future rewards. A value of 0 means that the agent only cares about 

immediate rewards, while a value of 1 means that the agent values all rewards equally, regardless 

of when they occur. 

Three values are used to find the optimal one, 0.5, 0.9, and 0.99. 

5.5.4 Temporal Difference Step 

Temporal Difference (TD) is a learning method used in reinforcement learning, where the 

agent learns to predict the value of the next state by updating its current estimate of the value 

function based on the difference between the observed reward and the predicted reward. The TD 

step involves calculating the TD error, which is the difference between the observed reward and 

the predicted reward, and updating the value function estimate based on this error. 

In the TD step, the agent observes the current state, takes an action, and receives a reward 

and the next state. The agent uses the observed reward and the estimated value of the next state 
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to calculate the TD error. The TD error is then used to update the value function estimate for the 

current state. This process is repeated for each time step, allowing the agent to learn to predict 

the value of the next state based on its current estimate of the value function. The size of the TD 

step is controlled by the learning rate and the discount factor. 

We use two values in the tuning process for the TD Step 1 and 2. 

5.5.5 Number of Hidden Layers 

The number of hidden layers in a reinforcement learning (RL) algorithm depends on 

various factors, such as the complexity of the problem and the size of the input and output 

spaces. 

In general, deep reinforcement learning algorithms, which use deep neural networks as 

function approximators, often have multiple hidden layers. The number of hidden layers can 

range from a few to dozens, depending on the complexity of the problem and the amount of 

available training data. 

However, it is important to note that the number of hidden layers is not the only factor 

that affects the performance of an DQN algorithm. Other factors such as the number of neurons 

in each layer, the activation functions used, and the optimization algorithm also play important 

roles in the success of a DQN algorithm. 

To reduce the number of combinations of hyperparameter tuning, we use a fixed number 

(64) of nodes in each hidden layer and only tune the number of hidden layers to achieve the goal 

of tuning the architecture of the DNNs. Based on the existing research about the single 

intersection scenario as well as the input definition in our simulation, we choose two values for 

the number of hidden layers, 3 and 6, resulting in 5 and 8 total layers for the DNNs combining 

with the input and output layers. 

5.5.6 Target Frequency 

In reinforcement learning, the target frequency refers to how often the target network is 

updated to match the parameters of the primary network. The target network is a separate copy 

of the primary network used to estimate the value of the next state in the Q-learning algorithm. 

The target network is updated less frequently than the primary network to provide a more 

stable and consistent target for the Q-learning algorithm. The target frequency is a 

hyperparameter that determines how often the target network is updated, and it can affect the 

stability and convergence speed of the algorithm. 

A common approach is to update the target network every 𝐶steps, where 𝐶 is the target 

frequency hyperparameter. This approach is used in the DQN algorithm, where the target 

network is updated every fixed number of steps. 

We choose two values for the target frequency, 64 and 128. 
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5.5.7 Minimum Green Duration 

We also tuned the minimum green duration. This value determines the minimum green 

time for each phase. Two values are included in the tuning process, 6 and 12 seconds. 

5.5.8 Non Tuned Hyperparameters 

Some of the hyperparameters in the DQN are not tuned based on the fact that they are 

easy to be determined based on the previous research and application. In addition, it is also an 

effective method to reduce the total number of combinations of hyperparameters in the tuning 

process and hence significantly reduce the computing time. 

The replay buffer with size, denoted by 𝐵, saves a certain number of past experiences of 

the agent to help calculate the loss of DQN and facilitate the model to converge. It seems a larger 

size of replay buffer favors better model performance. However, this should be varied based on 

the environment. A good way to determine it is it should be large enough to collect different 

types of experience so the agent can handle almost every state-action pair. We use 40000 for the 

replay buffer size in the single intersection scenario. 

Batch size, denoted by 𝑏, determines the number of experiences randomly selected from 

the replay buffer to be passed to the model. The minimum value of it can be 1 and the largest is 

the size of the replay buffer. Normally, this value is equal to the power of 2 to take advantage of 

the computer memory unit. We use 128 in our DQN. 

The greedy factor refers to the degree to which the agent prioritizes exploitation of the 

current best action versus exploration of new actions. A value of 1 for the greedy factor means 

the agent always chooses the current best action, while a value of 0 means the agent always 

chooses a random action. A common approach is to start with a high value for the greedy factor 

to encourage exploration, and then gradually reduce it over time to focus more on exploitation. 

This trade-off between exploration and exploitation is a fundamental challenge in reinforcement 

learning. We apply this logic by using 1 over the simulation time to decrease the value of the 

greedy factor. 

Episode defines the time of the training process, meaning the larger value, the longer 

experiment will be required. This hyperparameter is not explicitly tuned since we can easily 

increase the learning time as needed. For the hyperparameter tuning, we use 5000 as the value 

for the episode. Since each simulation lasts 3 hours, the total training time for each 

hyperparameter combination is equal to repeating the 3-hour simulation 5000 times, which 

should be a large enough simulation period to get a sense of the performance of each 

combination of hyperparameters. 

5.5.9 Summary 

Table 5.5-2 summarizes the parameters used in the tuning and training process. If there is 

only one single value, that parameter is not tuned, otherwise, it is a tuned parameter. 
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Table 5.5-2. Parameters in DQN including hyperparameter values 

Parameters Value/Values 

Learning Rate [0.0001, 0.00001, 0.001] 

Discount Factor [0.5, 0.9, 0.99] 

TD Step [1, 2] 

Number of Hidden Layers [3, 6] 

Target Frequency [64, 128] 

Green Duration [6, 12] 

Episodes 5000 

Replay Buffer Size 40000 

Batch Size 128 

Number of Nodes Per Hidden Layer 64 

Activation Function ReLU 

 

Overall, we have total of 144 combinations of hyperparameters in the tuning process. 

Hyperparameters for non-learning controllers are list in Table 5.5-3. 

 

Table 5.5-3. Hyperparameters for non-learning controllers 

Hyperparameters Values 

Uniform Traffic Controller  

Green Duration range(5, 26) 

Webster’s Traffic Controller  

Minimum Cycle Length [40, 60, 80] 

Maximum Cycle Length [160, 180, 200] 

Saturation Flow Rate [0.3, 0.38, 0.44] 

Time Interval (recalculate critical flow [600, 900, 1800] 
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ratio) 

Max-pressure Traffic Controller  

Green Duration range(5, 26) 

 

All controllers share the same yellow duration 3 seconds and all red duration 2 seconds. 

5.6 Simulation Platform 

5.6.1 Network 

In accordance with Chapter 4, we utilized SUMO for the training and testing phases. The 

experiment was performed on a single intersection. The intersection comprises four legs, each of 

which is inclusive of three lanes: two straight movement lanes and one left-turn lane. The length 

of each lane is 656 feet, equivalent to approximately 200 meters. To reflect the local street 

environment, the design speed for all lanes is set at 40 mph. It is important to note that left-turn 

lanes only permit left turns, but not U-turns.  

5.6.2 Demand 

As outlined in Chapter 4, the SUMO software generates demand through the associated 

demand module, which is discussed in section 4.3.2. The origin-destination (OD) pattern is 

entirely random, meaning that there is no predetermined ratio between straight movement and 

left turn. The hourly distribution of the demand is modeled using an exponential function with a 

sine wave to generate a random distribution of the demand and create unpredictable traffic 

patterns for the simulations. Two types of total demand are used in the evaluation of the traffic 

signal controller's performance, with approximately 4000 and 6000 vehicles per 3-hour 

simulation. These demand levels are not so heavy that they cause the network to become entirely 

congested, allowing for the evaluation of any control optimization to be conducted effectively. 

5.6.3 Measures of Effectiveness 

The evaluation of the traffic signal controllers' performance is based on several MoEs, 

including the average travel time, standard deviation of travel time, queue length, and total 

system delay. Once the training is complete and an acceptable DQN is achieved, we will conduct 

50 simulations, each lasting for 3 hours and using random seeds to ensure unbiased results. The 

average travel time is computed by dividing the total system travel time of all vehicles in the 

system by the number of vehicles. At the intersection level, we use queue length and total system 

delay as the MoEs. The queue length represents the total number of vehicles stopped in all 

incoming lanes of an intersection at a specific time step, while the total system delay is 

calculated by subtracting the free flow travel time from the sum of all vehicle travel times in the 

system at a particular time step. 



57 

5.6.4 Code 

We utilized an existing framework, developed by Genders and Razavi (2019), to compare 

the performance of various traffic signal controllers, including Uniform, adaptive Webster's, 

Max-pressure, and our proposed DQN with experience replay and target network. Although the 

framework already included the code for these controllers, we had to develop our own code for 

the DQN with a different reward function. However, the original code had not been maintained 

for years and required significant effort to make it functional. To assist others in implementing 

their own machine learning and non-machine learning controllers, the source code used in this 

dissertation can be found in here. 

5.7 Results 

5.7.1 Hyperparameter Tuning Results 

In Figure 1, the results of hyperparameter tuning are depicted for both learning and non-

learning traffic controllers. Figure 2 presents a consolidated view of all the hyperparameter 

tuning results in a single figure. 

 

Figure 5.7-1. Hyperparameter tuning results for each controller 

https://github.com/sumodqnx/dqnx
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Figure 5.7-2. Hyperparameter tuning results for all controllers in one graph 

All sorted hyperparameter tuning results are listed from Appendix 3 to Appendix 6. 

It should be noted that the purpose of hyperparameter tuning is to enable the machine 

learning model to evaluate its initial performance using various combinations of model and 

hyperparameters. However, in the case of non-learning traffic controllers, the hyperparameter 

tuning process explores the performance of each hyperparameter configuration to identify the 

optimal performance for each controller with a specific parameter setting. As a result, our 

analysis of the hyperparameter tuning results primarily focuses on the DQN model. 

 The results indicate that DQN performance is significantly affected by the choice 

of hyperparameters. Therefore, it is highly recommended and necessary to perform 

hyperparameter tuning before training any machine learning model, as the performance of a 

learning model cannot be guaranteed by any specific combination of hyperparameters. This is 

true not only for more complex frameworks that include multiple hyperparameters but also for 

simpler ones like the reinforcement learning framework, Q-learning.  

The presence of a grouping effect can be observed with respect to the learning rate and 

the discounting factor, where a discounting factor of 0.99, which is close to 1, results in poor 

performance, regardless of the configuration of other parameters. Additionally, the learning rate 

is an important hyperparameter that has a significant impact on the model performance. This 

finding confirms the conclusion of the study that the learning rate plays a crucial role in ensuring 

that the model converges at an appropriate speed.  

Interestingly, the other hyperparameters do not exhibit significant differences across 

different settings. In the case of the number of hidden layers, it is unlikely that adding three 

additional hidden layers would be necessary to extract more relevant information and enhance 
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the model's performance in our single intersection scenario. Similarly, the TD step, which 

involves calculating one or two immediate rewards to update the DNN model, does not appear to 

have a significant impact. The same is true for the update frequency, which follows a similar 

trend.  

In summary, our experiments have demonstrated that hyperparameter tuning is crucial for 

achieving optimal performance when using DQN, as it is highly sensitive to the choice of 

hyperparameters. Among the hyperparameters that we examined, the learning rate and discount 

factor were found to be the most important in terms of their impact on the model's performance.  

After analyzing the hyperparameter tuning results, we selected the combination of 

hyperparameters that produced the best preliminary results in terms of the lowest average travel 

time and standard deviation of travel time for further training the DQN model. The table below 

provides an overview of all the parameters that were used in the DQN training process, as well as 

the hyperparameters for the non-learning traffic controllers. 

5.7.2 Traffic Controller Performance Comparison 

Based on the results of hyperparameter tuning, we established the value of each 

parameter for the extended training process of our DQN model. The hyperparameter tuning 

process involved 5000 episodes of 3-hour simulations, which had already demonstrated the 

agent's potential to outperform other non-learning traffic controllers in terms of average travel 

time and standard deviation of travel time, as shown in Figure 5.7-2. Consequently, we decided 

to initiate a new training process using the chosen hyperparameters, but with a larger number of 

episodes. One reason for this decision was our method of formulating the epsilon, which is the 

ratio of exploration and exploitation. Instead of continuing to train the best-performing model 

from the hyperparameter tuning process, we chose to start anew.  

As previously stated, we gradually decreased the value of epsilon during the training 

process to enable the agent to explore more at the early stages and exploit more at the end of the 

process. By starting a new training process with a larger number of episodes, we can provide the 

agent with additional opportunities to explore and identify the most effective direction for 

improving its performance during training by adding more episodes. 

Our DQN model underwent training for 20,000 episodes, which equates to 20,000 3-hour 

simulations based on the given demand of approximately 6,000 vehicles in the single 

intersection. Figure 5.7-3 depicts the system-level performance of all controllers in terms of 

average vehicle travel time, mean vehicle travel time, and standard deviation of vehicle travel 

time.  
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Figure 5.7-3. System Level Performance Comparison of DQN and other Non-learning Controllers 

with 6,000 Demand 

 

Figure 5.7-4. Intersection Level Performance Comparison of DQN and other Non-learning 

Controllers with 6,000 Demand 

Figure 5.7-4 depicts the intersection-level results, encompassing vehicle queue length and 

vehicle delays. In a single simulation, we should have 10,800 results for each time step. To 

smooth out the lines, we calculated the average values every minute, reducing the data to 180. 
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For each traffic controller, we conducted 32 simulations, resulting in 32 different outcomes. In 

Figure 5.7-4, the solid line corresponds to the mean value obtained from these 32 results, while 

the shaded area indicates the 95% confidence interval with alpha = 0.05. During this stage of the 

analysis, the DQN model does not explore the environment further. Instead, it chooses the phase 

that maximizes the reward at each time step. 

For the intersection-level results, the x-axis represents the simulation time step, which is 

180 minutes (3 hours), while the y-axis shows the queue length measured by the number of 

vehicles in the intersection by summing all stopped vehicles from its incoming lanes in the top 

graph and total delay of all vehicles in the lower graph.  

Based on the results at both the system level and intersection level, our DQN model 

outperforms all other considered controllers in terms of the chosen MoEs, with Max-pressure 

coming in second and the uniform traffic controller performing the worst, which is not surprising 

since we used fully random demand in the experiment. It is expected and well-known that 

adaptive controllers are more efficient.  

It should be noted that machine learning models are often unable to provide a clear 

explanation for why they perform better than non-learning controllers. This is a limitation of 

machine learning models, and more research is needed to make their decision-making process 

more explicit. However, one observation that can be made is the pattern of phase selection by the 

DQN. Figure 5.7-5 depicts the percentage of frequency each phase is selected in one simulation 

for the DQN controller, while Figure 5.7-6 shows the same for the Max-pressure. It is evident 

that the DQN seldom chooses the left-turn movement, accounting for only 5% of the total for the 

left-turn phases. It is plausible that the DQN recognizes that the straight movement phases have 

unprotected left-turn green light for those vehicles and that choosing the straight movement with 

unprotected left-turn phases is more efficient. 

 

Figure 5.7-5. Frequency of phase selection in one simulation for DQN controller with 6,000 Demand 
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Figure 5.7-6. Frequency of phase selection in one simulation for Max-pressure controller with 6,000 

Demand 

In addition to presenting the percentage of Max-pressure phases, we include the phase 

with the highest pressure based on queue length, as it is also aperiodic. In our simulations, traffic 

demand is random and sometimes results in more left-turning vehicles than those traveling 

straight, leading to more frequent activation of left-turn phases compared to the DQN controller, 

as indicated in Figure 5.7-5 and Figure 5.7-6. This demonstrates the benefit of the DQN 

approach, which receives similar inputs but has learned a policy that utilizes unprotected left-turn 

green allocations for left-turn traffic instead of resorting to protected left-turn phases that 

introduce additional delays to the system.    

There is another possible reason related to the definition of the state. As we included the 

vehicle density and queue length for each lane, the agent may have learned to differentiate 

between them and create predictions to extend certain phases in order to reduce system loss time. 

It is also possible that the machine learning controller finds something that has not been found by 

the most smart human beings.  

We also tested the model with lower traffic demand (4,000) without hyperparameter 

tuning and used the same hyperparameter settings from the previous experiment, which also 

resulted in the best performance compared to non-learning traffic controllers, as shown in Figure 
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5.7-7 and 

 

Figure 5.7-8. We did not initiate another round of training but utilized the results from the 

traffic demand of 6,000 to this lower demand scenario.  

 

Figure 5.7-7. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 

Demand 
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Figure 5.7-8. Intersection Level Performance Comparison of DQN and Non-learning Controllers with 4,000 

Demand 

It is reasonable that the previously trained DQN model could perform well with lower 

traffic demand since it had already encountered similar conditions during the training process 

and learned to generalize its performance. This result highlights the potential of machine learning 

algorithms, as they cannot only learn from higher traffic demand scenarios but also generalize 

their performance to lower traffic demand scenarios, outperforming non-learning traffic 

controllers. 

5.8 Conclusion 

To ensure the optimal performance of our proposed DQN model, we conducted 

experiments on various hyperparameter settings. This approach sets our research apart from 

others, as most of them do not perform hyperparameter tuning before the actual training process. 

The hyperparameter tuning process not only helped us optimize the non-learning traffic 

controllers, but also laid a strong foundation for the actual DQN training process.  

Based on the findings of the hyperparameter tuning, we discovered that the performance 

of our proposed DQN is highly influenced by the configuration of its hyperparameters. 

Specifically, the learning rate and discount factor were identified as the most critical 

hyperparameters in our single intersection scenario, while other involved hyperparameters 

appear to be less significant.  

Our proposed DQN, equipped with experience replay, target network, and optimized 

hyperparameters, has been shown through simulation experiments to provide the best 

performance in terms of MoEs such as average travel time, queue length, and vehicle delays. 

Moreover, the model is capable of generalizing well to lower traffic demand scenarios, thanks to 

its training process with higher traffic demand.  
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Although coding and mathematical knowledge of the reinforcement learning framework 

are required, transportation knowledge is only minimally necessary to understand DQN. In 

addition to the traffic controller's principles, traditional complex traffic flow models do not have 

to be explicitly formulated since the AI can learn them during the training process. This 

advantage allows anyone interested in traffic signal controller algorithms to explore better 

machine learning control algorithms without extensive knowledge of the transportation domain. 

This accelerates the development of better control method performance. 
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Chapter 6.  Grid Network Deep Reinforcement Learning Traffic Signal 

Control with Incidents 

6.1 Overview 

Traffic incidents within transportation networks not only raise safety concerns for 

travelers but also cause significant delays in the system. Traffic Incident Management (TIM) was 

established to mitigate the adverse effects of such incidents by promptly resolving them and 

restoring transport infrastructure services. While attempts have been made to use traffic signal 

coordination to lessen the impact of incidents, the infrequency of these events and the 

complexity of modeling the relationship between incidents and signal configurations have made 

it difficult to implement. Consequently, devising a practical solution to adjust traffic controllers 

and minimize the impact of incidents remains a challenge. 

The aim of this study is to explore the application of machine learning techniques to 

reduce the consequences of traffic incidents, building upon prior research that demonstrated the 

superiority of DQN with hyperparameter tuning over conventional traffic control techniques 

such as Uniform, Webster's, and Max-pressure. This approach circumvents the need for explicit 

modeling of traffic flow and its relationship with signal plan configurations. Our research 

includes an incident generation module, as described in Chapter 4, which creates random 

incidents within the network to offer learning opportunities for the AI controller. 

We will evaluate the performance of the DQN in the context of traffic incidents by 

conducting experiments using two distinct network configurations: a two-intersection corridor 

and a 2x2 grid network, both featuring incident occurrences. Moreover, we will analyze two 

separate traffic demand scenarios with varying total vehicle counts to confirm the effectiveness 

of the DQN. To improve the AI controller's capacity to handle traffic incidents, we introduce a 

new state definition for the DQN. 

6.2 Literature Review 

Traffic incident management is a critical aspect of transportation system operations. It 

involves the coordination of multiple agencies to promptly detect, respond to, and clear incidents 

on road networks to minimize congestion, reduce secondary crashes, and improve overall 

transportation efficiency. Traffic signal control strategies are essential tools that can be leveraged 

to facilitate better traffic incident management. This literature review provides an overview of 

the key research conducted on traffic incident management with a focus on traffic signal plan 

adjustments. 

Carson et al. (2010) conducted a comprehensive review of traffic incident management 

practices in the United States. The author collected data from various sources, including federal 

and state departments, transportation agencies, and emergency response organizations. The study 

identifies best practices across different aspects of traffic incident management, such as incident 

detection, response, clearance, and communication. The study concludes that adopting best 

practices in traffic incident management can significantly improve the efficiency and 

effectiveness of incident response, reduce congestion, and enhance safety for both responders 

and road users. The report highlights the importance of inter-agency collaboration, real-time 
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communication, and standardized protocols in achieving better traffic incident management 

outcomes. Additionally, it emphasizes the need for continuous training, performance 

measurement, and improvement to ensure the successful implementation of best practices. 

Goodall et al. (2013) conducted a qualitative analysis of traffic incident management 

practices across multiple agencies. Interviews and surveys were used to collect data on 

collaboration and communication among agencies involved in traffic incident management. The 

study concludes that effective inter-agency collaboration and communication are crucial to 

successful traffic incident management. It recommends the development of integrated systems 

and standardized procedures to facilitate better collaboration among agencies. 

These studies show performance improvement of transportation systems can be gained by 

adjusting the traffic signal control plan during traffic incidents in the network. One of many 

difficulties is how to provide a solid and reasonable strategy to adjust the traffic signal plan 

accordingly. Gartner et al. (2001) reviewed existing Traffic-Responsive Plan Selection (TRPS) 

systems and their methodologies. It also conducted a comparative analysis of their performance 

in various traffic scenarios. The study finds that TRPS systems can significantly improve traffic 

signal control during incidents by adapting signal timings to real-time traffic conditions. It 

highlights the potential of TRPS in reducing congestion and travel times during incidents.  

Traditional research uses model-based methods and microsimulation to investigate the 

proposed signal control plan optimization strategies. Mirchandani and Head (2001) reviewed 

model-based traffic signal control strategies, focusing on multiple-objective optimization 

approaches. The authors explore various algorithms and their applicability in incident 

management scenarios. The study concludes that model-based traffic signal control strategies can 

effectively address multiple objectives, such as minimizing delays and maximizing throughput, 

during incidents. It recommends further research on the development and evaluation of these 

strategies in real-world traffic scenarios. 

Aboudolas et al. (2010) explores the use of Model Predictive Control (MPC) as an 

adaptive traffic signal control strategy. It develops a simulation model to evaluate the 

performance of MPC in various traffic scenarios, including incidents. The study finds that MPC 

can effectively adjust traffic signal timings during incidents, leading to reduced delays and 

improved traffic flow. It recommends further research on the development and evaluation of 

MPC in real-world traffic scenarios.  

One significant limitation of using model-based methods to find the optimal traffic signal 

control plan for reducing the impact of network traffic incidents is the dependenence on the 

model accuracy . Due to the complexity of the transportation network system, this is too hard to 

be practical.  

Current research has begun to use machine learning methods to conquer the limitation of 

traditional model-based methods of traffic signal adjustment. Hadiuzzaman et al. (2012) 

proposed a methodology for adjusting traffic signal timings during incidents using Artificial 

Neural Networks (ANNs). It develops an ANN-based model and evaluates its performance in 

terms of reducing delays and congestion in simulated traffic scenarios. The study concludes that 

the proposed ANN-based methodology can effectively adjust traffic signal timings during 
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incidents, leading to reduced delays and improved traffic flow. It recommends further research 

on the development and evaluation of ANN-based traffic signal control strategies in real-world 

traffic scenarios. However, the research did not explain the hyperparameters decision which 

makes the research hard to duplicate and the compared signal controllers do not include more 

advanced controllers such as Max-pressure. 

This paper will fill the gap by investigating the impact of several key hyperparameters in 

the deep reinforcement learnig, especially Deep Q-Network (DQN), to optimize traffic signal 

control algorithms with traffic incident occurance. This will provide practical guidance for 

researchers and enable implementations of deep reinforcement learning signal control algorithms 

to reduce impacts of incidents in transportation networks.  

6.3 Incident Generation 

We have developed an incident generation module within the open-source 

microsimulation platform, SUMO, to expose the machine learning controller to situations 

involving traffic incidents within the network. This approach creates relevant experiences for the 

AI controller to learn from and enhance its decision-making process regarding traffic phase 

selection. To the best of our knowledge, this is the first instance of incorporating the incident 

concept into SUMO. 

In our simulation, we consider both single-vehicle and multiple-vehicle incidents. We 

represent the number of vehicles involved by using a single vehicle in SUMO with varying 

lengths, assuming each vehicle measures 5 meters in length with an additional 2.5-meter gap 

between stopped vehicles. For example, a two-vehicle incident would occupy 15 meters of lane 

space. 

The incident generation module randomly selects a lane connecting two intersections to 

emulate the coordination impact between traffic controllers. In our scenario, each identical 

intersection features two straight movement lanes and one left-turn lane. We present two 

potential incident locations: on the straight movement lane or the left-turn lane. To simplify the 

learning process and minimize the risk of gridlock, we restrict incident locations to the straight 

movement lanes. 

The incident vehicle's route is generated randomly, adhering to the requirement that it 

passes through at least two intersections. This ensures that the incident affects multiple 

intersections rather than just one. Our simulation schedules the incident randomly during the 

second hour of the three-hour simulation period, allowing most vehicles to complete their trips. 

Incident durations are assumed to be either 15 or 30 minutes. 

Additionally, we incorporate emergency service vehicles into the incident generation 

module to simulate the rescue process impact. Representing an abstraction of multiple service 

vehicles, the emergency vehicle varies in length from 22.5 to 45 meters. It is generated 5 minutes 

after an incident is detected and travels from a random origin, stopping next to the incident 

location until the incident vehicle moves. 

Under these conditions, traffic flow is significantly affected by the incident, allowing us 

to observe the intersection controllers' responses. The Uniform traffic controller maintains its 



69 

fixed pattern and green phase duration, offering no response to the incident. In contrast, the 

Webster's traffic controller adjusts its phases to accommodate the new traffic pattern by either 

reducing or extending the current phase. The Max-pressure and DQN traffic controllers, with 

their acyclic phase selection capabilities, should theoretically perform better in such scenarios, as 

they can choose suitable phases in any given situation. 

6.4 New State 

Transportation networks can be significantly disrupted by the occurrence of incidents. 

One consequence is that vehicles behind the incident point may become stuck, regardless of the 

amount of green time allocated. Adaptive traffic controllers struggle to account for this feature to 

enhance their performance. To address this issue, we introduce a new state for the proposed 

DQN to further improve its capabilities. 

The new state is defined as the queue that could potentially be reduced by allocating 

green time and monitoring vehicles that have not been able to move after experiencing green 

phases. This approach ensures that the queue information passed to the DQN model is more 

accurate. We apply this new state only to the DQN, as we have established in the previous 

chapter that it outperforms other traffic controllers in single intersection scenarios. In this 

chapter, our goal is to determine the extent of the DQN's performance improvement in situations 

involving incidents and the application of the new state definition. 

To implement the new state collection, information on each individual vehicle's location 

and the most recent phase is required. If a vehicle's location has not changed compared to the 

previous time step, and the vehicle has already experienced a green phase for its traveling 

direction, we can deduce that the vehicle is stuck in the system and will be removed from the 

queue calculation. 

The DQN model employed in this chapter maintains the same structure as the one used in 

the previous chapter, including its action and reward system, as well as the incorporation of 

experience replay and target network. The DNN structure also remains similar, utilizing the 

ReLU activation function and fully connected hidden layers. However, the primary distinction 

lies in the increased number of hidden layers used in this chapter. This is due to the heightened 

complexity of corridor and grid networks with traffic incidents, necessitating a more detailed 

analysis of the relationship between action choices and environmental inputs. 

6.5 Simulation Settings 

To demonstrate the performance of the DQN, we compare it with three other traffic 

signal controllers: Uniform, Webster's, and Max-pressure. Definitions and implementation 

details for each traffic signal controller can be found in the previous chapter, which focuses on 

single intersection scenarios. It is important to note that the new state definition is applied to both 

the DQN and Max-pressure controllers, as they both depend on queue information to adjust their 

phase choices. The simulation spans a three-hour period and is conducted using SUMO. 
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6.5.1 Network 

We employ two network configurations to assess the performance of non-learning traffic 

controllers and the DQN in scenarios involving incidents: a two-intersection corridor and a 2x2 

grid network, illustrated in Figure 6.5-1 and Figure 6.5-2, respectively. Each intersection in these 

network configurations is identical to the single intersection examined in the previous chapter.  

 

Figure 6.5-1. Corridor with two intersections 
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Figure 6.5-2. 2x2 Grid Network 

6.5.2 Demand 

In the simulations, we will employ two distinct traffic demands, consisting of 4,000 and 

6,000 vehicles, respectively. Although these demands are not overly heavy for the two networks 

in the absence of incidents, the network becomes congested when an incident takes place, 

presenting an opportunity for traffic controllers to adjust their phase selection and enhance 

network performance.  

The presence of an incident in the network can lead to longer queues at one or more 

intersections compared to a situation without incidents. This can significantly diminish the 

network's performance, which can be improved by employing adaptive traffic controllers such as 

Webster's, Max-pressure, and a trained DQN. 
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6.6 Hyperparameter Tuning 

Drawing on our experience with hyperparameter tuning in the single intersection 

scenario, we have determined that the most crucial hyperparameters to adjust are the learning 

rate and discount factor. To minimize computing time, we have limited the hyperparameter 

tuning list to three values for each parameter. For the remaining parameters, we will use the 

hyperparameters obtained from the single intersection tuning. Furthermore, we have increased 

the number of hidden layers in the DNN from 3 to 6 to augment its capacity to capture more 

complex features from the inputs, thereby improving the performance of the DQN controller. 

Table 6.6-1 presents the parameters employed during the training process for the corridor and 

grid networks, as well as other non-tuning parameters used in the DQN. 

Table 6.6-1. Parameters used in DQN controller for the corridor and grid network 

Parameters Value/Values 

Learning Rate [0.0001, 0.00001, 0.001] 

Discount Factor [0.5, 0.7, 0.9] 

TD Step 2 

Number of Hidden Layers 6 

Target Frequency 128 

Green Duration 6 

Episodes 5000 

Replay Buffer Size 40000 

Batch Size 128 

Number of Nodes Per Hidden Layer 64 

Activation Function ReLU 

6.7 Results 

6.7.1 Hyperparameter Tuning Results 

Hyperparameter tuning is carried out for both the corridor and grid (2x2 intersections) 

networks with a higher traffic demand of 6,000 vehicles. Figure 6.7-1 and Figure 6.7-2 

consolidate the results of hyperparameter tuning for each controller into a single figure to 

facilitate a better understanding of each controller's performance after hyperparameter tuning, 

where Figure 6.7-3 and Figure 6.7-4 show the combined results. Appendix 11 to 14 provide a 

comprehensive list of hyperparameter tuning results for all four controllers. 
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It is important to note that the DQN's performance is not finalized, as we still need to 

train the model instead of directly applying the preliminary results from hyperparameter tuning. 

In contrast, the performance of the other three controllers is determined due to their non-learning 

properties. The rationale behind using the incident scenario to train the DQN is to expose the 

controller to experiences involving traffic interruptions caused by incidents, thereby enabling it 

to better adapt its actions for improved performance. Once the DQN has learned from both 

incident and non-incident periods, it may develop a model capable of handling both situations by 

adjusting its DNN parameters. 

 

Figure 6.7-1. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and 

incident (Separate Graph) 
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Figure 6.7-2. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident 

(Separate Graph) 

 

 

Figure 6.7-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and 

incident (Combined Graph) 
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Figure 6.7-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident 

(Combined Graph) 

It is noticeable that the performance of the DQN across different hyperparameter 

combination settings is not as varied as seen in the single intersection hyperparameter tuning 

results. This is because we have already narrowed down the potential values to be included in the 

hyperparameter tuning process. Another observation is that, with proper hyperparameter settings, 

the performance of the best DQN model can be on par with Max-pressure even without being 

trained extensively. 

To analyze the fact that traditional non-learning controllers struggle to handle varying 

traffic situations, such as networks with or without incidents even for the same traffic demand, 

we also conducted hyperparameter tuning for the 2x2 grid network with a 6,000-vehicle demand 

and no incidents in the network. Figure 6.7-5 and Figure 6.7-6 display the hyperparameter tuning 

results, while Appendix 15 to 18 provide more detailed information on the results. 
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Figure 6.7-5. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no 

incident (Separate Graph) 

 

 

Figure 6.7-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no 

incident (Combined Graph)  
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By comparing the best hyperparameter settings from all controllers, we can see that the 

learning model employs almost the same settings, with the only difference being the learning 

rate. However, the second-best results use the same settings in both incident and non-incident 

scenarios for the DQN. In contrast, non-learning controllers utilize entirely different settings to 

compensate for the varying traffic patterns in the two scenarios. 

6.7.2 Controller Performance Comparison  

Using the best hyperparameter tuning settings for all controllers, we can compare their 

performance at both the system and intersection levels. For the learning model, DQN, we need to 

train it to achieve convergence. However, for non-learning controllers, we can simply use the 

best hyperparameters to generate the results. Each controller will be simulated 32 times to obtain 

a range of results, overcoming the randomness effect of using just a single simulation to verify 

its performance. Figure 6.7-7 displays the system-level results, including the mean travel time of 

all vehicles in the network with incidents in the corridor network, while Figure 6.7-8 illustrates 

the intersection-level performance. 

 

Figure 6.7-7. System Level Performance Comparison of DQN and other Non-learning 

Controllers with 6,000 Demand and Incident in Corridor Network 
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Figure 6.7-8. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

6,000 Demand and Incident in Corridor Network 

Figure 6.7-9 and Figure 6.7-10 depict the same performance measurement for the 2x2 

grid network but with the presence of incidents. 

 

Figure 6.7-9. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 

Demand and Incident in 2x2 Grid Network 
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Figure 6.7-10. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

6,000 Demand and Incident in 2x2 Grid Network 

In contrast to the corridor scenario, the incident causes a significant amount of delay in 

the grid network, which can be seen by the end period of the simulation, where the queue length 

does not return to 0 due to unfinished vehicles. This is expected, as we did not allocate extra time 

for the simulation but only allowed a 3-hour simulation for all situations. 

Incidents in both networks cause the controller's performance to vary significantly, but 

the mean travel time clearly shows that the fine-tuned and trained DQN outperforms other 

controllers with the lowest mean travel time and the lowest standard deviation of mean travel 

time. 

We also applied the model to the same demand without incidents in the network to see if 

the DQN controller can handle the situation for both incident and non-incident networks, even 

with the same training model. The logic behind this is that during the training process, the DQN 

controller also experiences the time when there is no incident in the network, as we only 

introduce the incident to the network for a certain amount of time out of the 3-hour simulation 

period. 

Figure 6.7-11 to Figure 6.7-14 show the results when applying the incident model 

directly to the non-incident scenario with the same traffic demand for both networks, including 

corridor and grid networks. 
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Figure 6.7-11. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 

Demand and No Incident in Corridor Network 

 

Figure 6.7-12. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

6,000 Demand and No Incident in Corridor Network 
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Figure 6.7-13. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 

Demand and No Incident in 2x2 Grid Network 

 

 

Figure 6.7-14. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

6,000 Demand and No Incident in 2x2 Grid Network 
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It is evident that the DQN outperforms the other controllers by directly applying the 

incident model to the non-incident situation. 

In addition to testing the same model in scenarios with and without incidents, we also 

apply the same model to cases with lower traffic demand. We reduce the demand by half, 

resulting in about 4,000 vehicle demand in the following simulations. Figure 6.7-15 to Figure 

6.7-22 display the performance of each traffic signal controller when applying its model from the 

6,000-demand scenario with incidents to the 4,000-demand scenario, both with and without 

incidents. 

 

Figure 6.7-15. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 

Demand and Incident in Corridor Network 
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Figure 6.7-16. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

4,000 Demand and Incident in Corridor Network 

 

Figure 6.7-17. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 

Demand and No Incident in Corridor Network 
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Figure 6.7-18. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

4,000 Demand and No Incident in Corridor Network 

 

Figure 6.7-19. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 

Demand and Incident in 2x2 Grid Network 
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Figure 6.7-20. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

4,000 Demand and Incident in 2x2 Grid Network 

 

Figure 6.7-21. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 

Demand and No Incident in 2x2 Grid Network 
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Figure 6.7-22. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

4,000 Demand and No Incident in 2x2 Grid Network 

In general, the application of the DQN model to scenarios with lower traffic volumes, 

both with and without incidents, demonstrates its notable performance advantage over non-

learning models. A peculiar observation from the above figures emerges in the 4,000-demand 

incident grid network scenario, where direct application of the model encounters some issues 

toward the end of the simulation. This is likely due to the DQN model's limited exposure to 

scenarios where vehicles are cleared from the network following an incident, as experienced in 

the original 6,000-demand grid network with an incident. It should be noted that we use a 

temporal difference with a step of 2 to calculate the long-term rewards of the DQN model.  

To address this limitation, we conduct further training of the original model in a scenario 

with a traffic demand of 4,000 and an incident. Figure 6.7-23 and Figure 6.7-24 showcase the 

results of this refined approach. The results shows that the DQN can be improved further by 

exposing it to enough training time. 
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Figure 6.7-23. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 

Demand and No Incident in 2x2 Grid Network (with further training) 

 

Figure 6.7-24. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 

4,000 Demand and No Incident in 2x2 Grid Network(with further training) 

6.8 Conclusion 

In conclusion, this chapter has presented a comprehensive comparative analysis between 

the DQN traffic signal controller and the traditional non-learning traffic signal controller 
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techniques under the influence of traffic incidents in the network. Through rigorous evaluation, it 

has been demonstrated that the DQN traffic signal controller significantly outperforms its non-

learning counterparts. The ability of the DQN controller to adapt and learn from its environment, 

coupled with its capacity to handle unpredictable traffic situations, enables it to provide more 

efficient and effective traffic signal timings. 

We employ two distinct network configurations, a 2-intersection corridor and a 2x2 grid 

network, to assess the performance of these controllers when confronted with traffic incidents. 

After fine-tuning hyperparameters and further training the DQN controller, we generate results 

for comparison. Additionally, we apply the model to a scenario without incidents to obtain 

similar comparative results, highlighting the superior performance of the DQN model. We also 

investigate lower demand scenarios both with and without traffic incidents in the network to 

evaluate the robustness of the DQN controller's performance. The findings indicate that, once 

properly trained, the DQN controller delivers consistent performance across various situations. 

The implementation of the DQN traffic signal controller has shown great promise in 

minimizing congestion, reducing travel time, and enhancing overall traffic flow in the presence 

of traffic incidents. By incorporating state-of-the-art machine learning techniques, the DQN 

traffic signal controller effectively manages traffic demands, mitigating the impact of incidents 

on urban mobility. As a result, this innovative approach offers substantial benefits to cities and 

urban planners by paving the way for a more sustainable and intelligent transportation system. 

While further research and refinements are necessary to optimize the performance and scalability 

of the DQN traffic signal controller, the findings presented in this chapter solidify its potential as 

a critical component in the future of smart traffic management. 
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Chapter 7.  Summary and Conclusions 

7.1 Summary 

In recent years, reinforcement learning (RL) has emerged as a promising approach to 

optimizing traffic signal control. This technique involves enabling traffic signals to learn and 

adapt to real-time traffic conditions autonomously, resulting in reduced congestion, improved 

traffic flow, and enhanced road safety. Traditional traffic signal control methods, such as fixed-

time and actuated systems, have shown limitations in handling dynamic traffic conditions. 

Reinforcement learning overcomes these limitations by allowing traffic signals to learn from 

their environment and make decisions based on current traffic conditions. This adaptive behavior 

results in more efficient traffic management and minimized delays for commuters. Various 

reinforcement learning algorithms, including Q-learning, deep Q-networks (DQNs), and 

proximal policy optimization (PPO), have been explored to address traffic signal control 

problems. These methods have demonstrated the potential to reduce waiting times, vehicle 

emissions, and fuel consumption by learning optimal traffic signal policies. 

This dissertation examines the efficacy of the simplest reinforcement learning 

framework, Q-learning, integrated with deep neural networks for optimizing traffic signal control 

in various network configurations, both with and without traffic incidents. Chapter 2 presents an 

extensive literature review to assess the current state of research and implementation of 

reinforcement learning in traffic signal control optimization. Various reinforcement learning 

approaches have been investigated to enhance intersection performance in transportation 

networks by modifying traffic signal plans. These methods have yielded promising results. 

However, there is limited research that presents a robust workflow, including hyperparameter 

tuning – a crucial and fundamental step in developing machine learning algorithms. Furthermore, 

the integration of reinforcement learning with traffic incident management for optimizing traffic 

signals and minimizing the impact of network disruptions due to incidents has not been 

adequately addressed, despite a significant practical demand for such solutions. 

In Chapter 3, the main focus is on addressing these two gaps by elucidating the concept 

of reinforcement learning, with an emphasis on Q-learning, which when combined with deep 

neural networks, results in the formation of a deep Q-network (DQN). The chapter not only 

highlights the benefits of DQN but also discusses its drawbacks and various modifications, such 

as the incorporation of target networks and experience replay, which can be employed to 

improve DQN performance. 

Chapter 4 outlines the creation of an incident generation module within an open-source 

microsimulation platform, SUMO. This module assists in generating experiences for the DQN 

agent, enabling it to gather crucial information from simulations involving traffic incidents. 

Consequently, the agent learns to modify the traffic signal controller to minimize the network's 

incident impact. The developed module simplifies the effects of single or multiple vehicle 

occurrences into a single vehicle with varying lengths to accurately represent its real-world 

impact. Furthermore, the chapter introduces a depiction of the emergency vehicle rescue process 

to enhance the realism of the simulations for the reinforcement learning agent. The random 

generation of incidents eliminates the need for model developers to gather difficult-to-obtain 

real-world data for use in simulations. 
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Chapter 5 carries out an in-depth hyperparameter tuning of the DQN within a single 

intersection simulation scenario. This chapter identifies the most significant hyperparameters in 

the DQN model, such as the learning rate and reward discount factor. An extensive 

computational process is undertaken to determine the optimal combination of hyperparameters 

for both learning (DQN) and non-learning traffic signal controllers (Max-pressure, Uniform, and 

Websters) within the single intersection scenario. Upon completion of the DQN model training 

based on the hyperparameter tuning, it is concluded that the DQN outperforms the other non-

learning traffic signal controllers. 

In Chapter 6, the DQN agent is introduced to a more complex environment, incorporating 

various network configurations (corridor and 2x2 grid network) and randomly generated 

incidents within the network. Utilizing the hyperparameter tuning results from the single 

intersection scenario, the range of potential values for the learning rate and discount factor is 

narrowed when tuning the corridor and 2x2 grid network DQN models. Experimental results 

reveal that the DQN outperforms non-learning controllers in both incident and non-incident 

networks using a single model. This suggests that manual switching of traffic signal plans is 

unnecessary during implementation, as the DQN can adapt to fluctuating demand patterns. This 

finding is further corroborated by testing the performance of all controllers under lower traffic 

demand settings. The results indicate that the DQN can be trained further to handle various 

traffic demands, demonstrating its promising advantages over non-learning traffic signal 

controllers. 

7.2 Directions for Future Research 

In future work, we plan to explore the application of more advanced reinforcement 

learning (RL) frameworks to optimize traffic signal control performance. By leveraging cutting-

edge algorithms and techniques such as multi-agent RL, hierarchical RL, and deep RL, we aim to 

create a more efficient and adaptive traffic signal control system that can better handle complex 

urban environments. This will involve designing reward functions that capture various 

objectives, such as reducing congestion, minimizing travel time, and improving fuel efficiency, 

while considering the diverse needs of different road users, such as pedestrians, cyclists, and 

public transportation. Additionally, incorporating real-time data from connected vehicles, traffic 

sensors, and IoT devices will enable our RL-based traffic control system to be more responsive 

to dynamic traffic patterns and emerging conditions. Ultimately, our goal is to develop a scalable 

and robust traffic signal control system that can significantly improve traffic flow and contribute 

to the development of smarter and more sustainable cities. 

In addition, we aim to focus on the practical implementation of reinforcement learning-

based traffic signal control systems, bridging the gap between theoretical advancements and real-

world applications. This will involve addressing challenges such as system integration, 

computational efficiency, and robustness to uncertainties, while ensuring that the system can be 

seamlessly integrated into existing traffic management infrastructures. Additionally, we plan to 

collaborate with local authorities, transportation agencies, and stakeholders to conduct pilot tests 

in various urban settings, allowing us to gather critical insights and feedback on the performance, 

scalability, and adaptability of our proposed system. To foster public acceptance and 

engagement, we will also emphasize the importance of transparent and interpretable decision-

making processes within the RL framework. By considering the complex interplay between 
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technical feasibility, regulatory compliance, and public acceptance, we strive to deploy an 

effective reinforcement learning-based traffic signal control system that can contribute to more 

efficient, safe, and sustainable urban transportation networks. 

Machine learning, as the driving force behind the future of technology, holds immense 

potential for revolutionizing traffic signal control systems. As urban centers continue to expand, 

the optimization of traffic flow has become increasingly critical to reduce congestion, fuel 

consumption, and emissions. Studying and implementing machine learning techniques in traffic 

signal control can lead to adaptive and intelligent systems that dynamically respond to real-time 

traffic conditions, enhancing overall efficiency and safety. Therefore, it is imperative that 

researchers, engineers, and policymakers closely examine and collaborate on the development 

and integration of machine learning methods in traffic management to effectively address the 

growing complexities of modern transportation networks. 
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Chapter 8.  Glossary 

AI Artificial Intelligence 

CFP Cyclic Flow Profiles 

DP Dynamic Programming 

DTA Dynamic Traffic Assignment 

DQN Deep Q Network 

DNN Deep Neural Network 

MDP Markov Decision Process 

MC Monte Carlo 

MOEs Measurement of Effectiveness 

OPAC Optimized Policies for Adaptive Control 

RHODES Real-Time Hierarchical Optimized Distributed and Effective System 

RIMS Rutgers Incident Management System 

SCATS Sydney Coordinated Adaptive Traffic System 

SCOOT Split Cycle Offset Optimization Technique 

SOTL Self-Organizing Traffic Light 

TRRL Transport and Road Research Laboratory 

TIM Traffic Incident Management 

TD Temporal Difference 

VISTA Visual Interactive System for Transport Algorithms 

SUMO Simulation of Urban Mobility 

 



95 

Chapter 9.  References 

1. Aboudolas, K. M. A. E., Papageorgiou, M., Kouvelas, A., & Kosmatopoulos, E. (2010). A 

rolling-horizon quadratic-programming approach to the signal control problem in large-scale 

congested urban road networks. Transportation Research Part C: Emerging Technologies, 18(5), 

680-694. 

2. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2011, October). Traffic light control in non-

stationary environments based on multi agent Q-learning. In 2011 14th International IEEE 

conference on intelligent transportation systems (ITSC) (pp. 1580-1585). IEEE. 

3. Abdoos, M., Mozayani, N., & Bazzan, A. L. (2014). Hierarchical control of traffic signals using 

Q-learning with tile coding. Applied intelligence, 40(2), 201-213. 

4. Abdulhai, B., Pringle, R., & Karakoulas, G. J. (2003). Reinforcement learning for true adaptive 

traffic signal control. Journal of Transportation Engineering, 129(3), 278-285. 

5. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). 

State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. 

6. Akcelik, R., Besley, M., & Chung, E. (1998). An evaluation of SCATS Master Isolated control. 

In ARRB TRANSPORT RESEARCH LTD CONFERENCE, 19TH, 1998, SYDNEY, NEW 

SOUTH WALES, AUSTRALIA. 

7. Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-agent 

system for network traffic signal control. IET Intelligent Transport Systems, 4(2), 128-135. 

8. Balaji, P. G., German, X., & Srinivasan, D. (2010). Urban traffic signal control using 

reinforcement learning agents. IET Intelligent Transport Systems, 4(3), 177-188. 

9. Ban, X. J., Kamga, C., Wang, X., Wojtowicz, J., Klepadlo, E., Sun, Z., & Mouskos, K. (2014). 

Adaptive Traffic Signal Control System (ACS-Lite) for Wolf Road, Albany, New York (No. C-

10-13). New York (State). Dept. of Transportation. 

10. Ban, X., Wojtowicz, J. M., & Li, W. (2016). Decision-making tool for applying adaptive traffic 

control systems (No. C-13-04). New York State Energy Research and Development Authority. 

11. Bell, M. G. (1992). Future directions in traffic signal control. Transportation Research Part A: 

Policy and Practice, 26(4), 303-313. 

12. Carson, J. L. (2010). Best practices in traffic incident management (No. FHWA-HOP-10-050). 

United States. Federal Highway Administration. Office of Transportation Operations. 

13. Chin, Y. K., Bolong, N., Kiring, A., Yang, S. S., & Teo, K. T. K. (2011). Q-learning based traffic 

optimization in management of signal timing plan. International Journal of Simulation, Systems, 

Science & Technology, 12(3), 29-35. 

14. Cools, S. B., Gershenson, C., & D’Hooghe, B. (2013). Self-organizing traffic lights: A realistic 

simulation. In Advances in applied self-organizing systems (pp. 45-55). Springer, London. 

15. Dell, P. A. O. L. O., & Mirchandani, B. (1995). REALBAND: An approach for real-time 

coordination of traffic flows on networks. Transp. Res. Rec, 1494, 106-116. 

16. Dougald, L. E., Venkatanarayana, R., & Goodall, N. J. (2016). Traffic incident management 

quick clearance guidance and implications (No. FHWA/VTRC 16-R9, VTRC 16-R9). Virginia 

Transportation Research Council. 

17. Dutta, U., Lynch, J., Dara, B., & Bodke, S. (2010). Safety Evaluation of the SCATS Control 

System (No. RC-1545K). 



96 

18. El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2014). Design of reinforcement learning 

parameters for seamless application of adaptive traffic signal control. Journal of Intelligent 

Transportation Systems, 18(3), 227-245. 

19. Fellendorf, M. (1994, October). VISSIM: A microscopic simulation tool to evaluate actuated 

signal control including bus priority. In 64th Institute of Transportation Engineers Annual 

Meeting (Vol. 32, pp. 1-9). Springer. 

20. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2001, August). Implementation of the OPAC 

adaptive control strategy in a traffic signal network. In ITSC 2001. 2001 IEEE Intelligent 

Transportation Systems. Proceedings (Cat. No. 01TH8585) (pp. 195-200). IEEE. 

21. Gartner, N. H., Pooran, F. J., & Andrews, C. M. (2002). Optimized policies for adaptive control 

strategy in real-time traffic adaptive control systems: Implementation and field testing. 

Transportation Research Record, 1811(1), 148-156. 

22. Gartner, N. H. (2005, October). Development of demand-responsive strategies for urban traffic 

control. In System Modelling and Optimization: Proceedings of the 11th IFIP Conference 

Copenhagen, Denmark, July 25–29, 1983 (pp. 166-174). Berlin, Heidelberg: Springer Berlin 

Heidelberg. 

23. Gayah, V. V., Gao, X. S., & Nagle, A. S. (2014). On the impacts of locally adaptive signal 

control on urban network stability and the macroscopic fundamental diagram. Transportation 

Research Part B: Methodological, 70, 255-268. 

24. Ge, H., Song, Y., Wu, C., Ren, J., & Tan, G. (2019). Cooperative deep Q-learning with Q-value 

transfer for multi-intersection signal control. IEEE Access, 7, 40797-40809. 

25. Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning agent for traffic signal 

control. arXiv preprint arXiv:1611.01142. 

26. Gershenson, C. (2005). A general methodology for designing self-organizing systems. arXiv 

preprint nlin/0505009. 

27. Ghaman, R. S. (2007). ACS Lite: A Signal Timing Strategy for Closed Loop Systems. In ITE 

2007 Annual Meeting and ExhibitInstitute of Transportation Engineers (ITE). 

28. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

29. Goodfellow, I., McDaniel, P., & Papernot, N. (2018). Making machine learning robust against 

adversarial inputs. Communications of the ACM, 61(7), 56-66. 

30. Hadiuzzaman, M., Qiu, T. Z., & Lin, Y. (2012). Real-time Traffic State Estimation and Prediction 

for Active Traffic and Demand Management: The Application of DynaTAM. In CICTP 2012: 

Multimodal Transportation Systems—Convenient, Safe, Cost-Effective, Efficient (pp. 3335-

3351). 

31. Head, K. L., Mirchandani, P. B., & Sheppard, D. (1992). Hierarchical framework for real-time 

traffic control (No. 1360). 

32. Howard, R. A. (1960). Dynamic programming and markov processes. 

33. Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Winton, R. I. (1981). SCOOT-a traffic 

responsive method of coordinating signals (No. LR 1014 Monograph). 

34. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. 

Computers and electronics in agriculture, 147, 70-90 

35. Kell, J. H., & Fullerton, I. J. (1991). Manual of traffic signal design. 

36. Klein, L. A. (2001). Sensor technologies and data requirements for ITS. 



97 

37. Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and 

applications of SUMO-Simulation of Urban MObility. International journal on advances in 

systems and measurements, 5(3&4). 

38. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444 

39. Lin, F. B. (1985). Optimal timing settings and detector lengths of presence mode full-actuated 

control (No. 1010). 

40. Lin, L. J. (1992). Reinforcement learning for robots using neural networks. Carnegie Mellon 

University. 

41. Liu, H., & Hall, R. (2000). INCISM: Users Manual. 

42. Logi, F., & Ritchie, S. G. (2001). Development and evaluation of a knowledge-based system for 

traffic congestion management and control. Transportation Research Part C: Emerging 

Technologies, 9(6), 433-459. 

43. Lowrie, P. R. (1990). Scats, sydney co-ordinated adaptive traffic system: A traffic responsive 

method of controlling urban traffic. 

44. Mao, T., Mihaita, A. S., & Cai, C. (2019). Traffic signal control optimization under severe 

incident conditions using Genetic Algorithm. arXiv preprint arXiv:1906.05356. 

 

45. Markov, A. A. (1954). The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA 

Steklova, 42, 3-375. 

46. McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary 

learning systems in the hippocampus and neocortex: insights from the successes and failures of 

connectionist models of learning and memory. Psychological review, 102(3), 419. 

47. Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: architecture, 

algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6), 415-432. 

48. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, 

D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-

533. 

49. Shoufeng, L., Ximin, L., & Shiqiang, D. (2008, April). Q-learning for adaptive traffic signal 

control based on delay minimization strategy. In 2008 IEEE International Conference on 

Networking, Sensing and Control (pp. 687-691). IEEE. 

50. Slinn, M., Matthews, P., & Guest, P. (1998). Traffic engineering design. Principles and practice. 

51. Stevanovic, A., Kergaye, C., & Martin, P. T. (2009, November). Scoot and scats: A closer look 

into their operations. In 88th Annual Meeting of the Transportation Research Board. Washington 

DC. 

52. Ozbay, K., & Bartin, B. (2003). Incident management simulation. Simulation, 79(2), 69-82. 

53. Ozbay, K. M., Xiao, W., Jaiswal, G., Bartin, B., Kachroo, P., & Baykal-Gursoy, M. (2009). 

Evaluation of incident management strategies and technologies using an integrated 

traffic/incident management simulation. World Review of Intermodal Transportation Research, 

2(2-3), 155-186. 

54. Prashanth, L. A., & Bhatnagar, S. (2010). Reinforcement learning with function approximation 

for traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 12(2), 412-

421. 



98 

55. Robertson, D. I. (1969). TRANSYT: a traffic network study tool. 

56. Robertson, D. I. (1986). Research on the TRANSYT and SCOOT Methods of Signal 

Coordination. ITE journal, 56(1), 36-40. 

57. Roess, R. P., Prassas, E. S., & McShane, W. R. (2004). Traffic engineering. Pearson/Prentice 

Hall. 

58. Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach. 

59. Shelby, S. G., Bullock, D. M., Gettman, D., Ghaman, R. S., Sabra, Z. A., & Soyke, N. (2008, 

January). An overview and performance evaluation of ACS Lite–a low cost adaptive signal 

control system. In Transportation Research Board Annual Meeting (Vol. 190, pp. 130-137). 

60. Skabardonis, A., Bertini, R. L., & Gallagher, B. R. (1998). Development and application of 

control strategies for signalized intersections in coordinated systems. Transportation research 

record, 1634(1), 110-117. 

61. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press. 

62. Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). SVM parameter optimization using grid search 

and genetic algorithm to improve classification performance. TELKOMNIKA 

(Telecommunication Computing Electronics and Control), 14(4), 1502-1509. 

63. Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double 

q-learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1). 

64. Varaiya, P. (2013). Max pressure control of a network of signalized intersections. Transportation 

Research Part C: Emerging Technologies, 36, 177-195. 

65. Wang, S. C. (2003). Artificial neural network. In Interdisciplinary computing in java 

programming (pp. 81-100). Springer, Boston, MA. 

66. Watkins, C. J. C. H. (1989). Learning from delayed rewards. 

67. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3), 279-292. 

68. Webster, F. V. (1958). Traffic signal settings, road research technical paper no. 39. Road 

Research Laboratory. 

69. Winston, P. H. (1992). Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc.. 

70. Wirtz, J. J., Schofer, J. L., & Schulz, D. F. (2005). Using simulation to test traffic incident 

management strategies: The benefits of preplanning. Transportation research record, 1923(1), 82-

90. 

71. Yin, Y., Li, M., & Skabardonis, A. (2007). Offline offset refiner for coordinated actuated signal 

control systems. Journal of transportation engineering, 133(7), 423-432. 

 

  



99 

  



100 

Appendix 1: SUMO Network Generation Script 

The command below was run to generate the 4x4 grid network illustrated in this paper.  

netgenerate --grid --grid.number=4 --grid.length=200 --default.lanenumber=2 --

default.speed=20 --no-turnarounds=true --turn-lanes=1 --turn-lanes.length=100 --default-

junction-type=traffic_light --grid.attach-length=200 --tls.yellow.time=3 --tls.left-green.time=12 -

-tls.allred.time = 2 --output-file=net.net.xml 

Network generating parameters and their meanings: 

--grid: grid network will be generated. SUMO also provides for other types of networks 

to be generated automatically, including spider and random networks.  

--grid.length defines the length of each intersection leg in meters 

--default.lanenumber defines the number of lanes for each approach 

--default.speed defines the edge design speed in meters/second 

--no-turnarounds defines whether to allow turn around for the left turn lane 

--turn-lanes defines the number of left turn lanes 

--turn-lanes.length defines the length of left turn lanes 

--default-junction-type defines the intersections in the network are controlled by the 

pretimed traffic signals 

--grid.attach-length defines the length of road attached to the fringe of intersections in the 

network 

--tls.yellow.time defines the duration of yellow phase in seconds 

--tls.left-green.time defines the protected left turn movement green time in seconds 

--tls.allred.time defines the duration of all red phase in seconds 

More options of calling NETGENERATE could be found in 

https://sumo.dlr.de/docs/netgenerate.html.  
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Appendix 2: Developed Traffic Demand Generating Script 

Traffic demand was prepared by calling python randomTrips.py -n net.net.xml -r 

random.rou.xml --fringe-factor=100000000 --period=0.5 -e 3600. 

Where randomTrips.py is a Python script tool provided by SUMO. 

-n net.net.xml defines the location of the network file.  

-r defines the name of the output route file.  

--fringe-factor defines the ratios of through and internal traffic demand in the network. 

An extremely large number is used here to eliminate the internal traffic demand in the network. 

--period defines the 1/number of vehicles generated per second. 0.5 used here means two 

vehicles will be generated per second in the network.  

-e defines the end simulation step of generating trips so here one hour traffic demand is 

generated. 
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Appendix 3: DQN Hyperparameter Tuning Results for Single 

Intersection Network 

ID 
Discount 
Factor 

Green 
Duration 
(seconds) 

Learnig 
Rate 

Number of 
Hidden 
Layers 

Temporal 
Difference 
Steps 

Update 
Frequency 

Mean 
(seconds) 

Standard 
Deviation 
(seconds) 

1 0.5 6 
1.00E-

05 3 2 64 54 29 

2 0.5 6 
1.00E-

05 3 1 64 55 31 

3 0.5 6 0.001 6 1 128 56 37 

4 0.5 6 0.001 6 2 64 56 34 

5 0.5 6 0.0001 3 2 128 57 40 

6 0.5 6 0.0001 6 2 128 57 36 

7 0.5 6 
1.00E-

05 3 2 128 57 32 

8 0.5 6 
1.00E-

05 6 1 128 57 37 

9 0.5 6 
1.00E-

05 6 2 64 57 33 

10 0.5 6 0.001 3 2 128 57 36 

11 0.9 6 
1.00E-

05 6 2 64 57 35 

12 0.5 6 0.0001 3 2 64 58 40 

13 0.5 6 
1.00E-

05 6 2 128 58 39 

14 0.5 6 0.001 6 1 64 58 39 

15 0.5 6 0.001 6 2 128 58 40 

16 0.9 6 
1.00E-

05 3 2 128 58 35 

17 0.5 6 0.0001 3 1 64 59 40 

18 0.5 6 0.0001 3 1 128 59 43 

19 0.5 6 
1.00E-

05 3 1 128 59 32 

20 0.5 6 0.001 3 1 128 59 37 

21 0.5 6 
1.00E-

05 6 1 64 60 42 

22 0.5 12 0.0001 3 1 64 60 33 

23 0.5 12 0.0001 3 1 128 60 39 

24 0.5 6 0.0001 6 1 64 61 46 
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25 0.5 6 0.0001 6 2 64 61 46 

26 0.5 6 0.001 3 1 64 61 46 

27 0.5 6 0.001 3 2 64 61 48 

28 0.9 6 0.001 3 1 128 61 43 

29 0.5 6 0.0001 6 1 128 63 52 

30 0.9 6 0.001 3 1 64 64 38 

31 0.9 6 
1.00E-

05 6 2 128 65 51 

32 0.9 12 0.0001 3 1 64 66 35 

33 0.9 12 0.0001 3 2 64 66 43 

34 0.9 12 0.001 3 2 128 67 61 

35 0.99 12 0.0001 3 2 128 69 41 

36 0.9 6 0.001 6 2 64 71 57 

37 0.5 12 0.0001 3 2 128 72 69 

38 0.5 12 0.0001 6 1 64 72 71 

39 0.5 12 0.001 3 2 64 72 69 

40 0.99 12 0.0001 3 2 64 72 45 

41 0.5 12 0.0001 6 1 128 73 70 

42 0.5 12 0.001 3 1 64 73 72 

43 0.9 12 0.0001 3 1 128 73 56 

44 0.9 6 0.001 3 2 128 73 67 

45 0.9 6 0.001 6 2 128 73 73 

46 0.5 12 0.0001 3 2 64 74 71 

47 0.5 12 0.001 3 1 128 74 75 

48 0.9 6 
1.00E-

05 6 1 128 75 56 

49 0.5 12 0.0001 6 2 128 76 79 

50 0.5 12 
1.00E-

05 6 2 64 76 78 

51 0.5 12 0.001 6 1 128 76 78 

52 0.9 6 
1.00E-

05 6 1 64 76 48 

53 0.9 12 0.0001 6 2 128 76 79 

54 0.9 12 0.001 6 2 128 76 80 

55 0.5 12 
1.00E-

05 3 1 128 77 79 
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56 0.5 12 0.001 6 1 64 77 81 

57 0.9 12 
1.00E-

05 6 2 128 77 81 

58 0.5 12 0.0001 6 2 64 78 82 

59 0.5 12 
1.00E-

05 6 1 128 78 82 

60 0.5 12 
1.00E-

05 6 2 128 78 81 

61 0.9 12 0.001 3 2 64 78 80 

62 0.9 6 0.0001 6 2 64 78 81 

63 0.9 6 0.001 3 2 64 78 81 

64 0.9 12 0.0001 6 2 64 78 81 

65 0.9 12 0.0001 6 1 64 78 82 

66 0.9 12 0.001 6 1 128 78 82 

67 0.5 12 
1.00E-

05 3 1 64 79 83 

68 0.5 12 0.001 3 2 128 79 82 

69 0.9 6 0.0001 3 2 64 79 74 

70 0.5 12 0.001 6 2 64 80 84 

71 0.5 12 0.001 6 2 128 80 86 

72 0.9 12 0.0001 3 2 128 80 82 

73 0.9 12 
1.00E-

05 6 2 64 80 84 

74 0.5 12 
1.00E-

05 6 1 64 81 87 

75 0.9 6 
1.00E-

05 3 2 64 81 74 

76 0.9 12 0.001 3 1 64 81 79 

77 0.9 12 0.001 3 1 128 81 81 

78 0.9 12 
1.00E-

05 3 2 128 81 85 

79 0.5 12 
1.00E-

05 3 2 64 82 88 

80 0.9 12 0.001 6 1 64 82 86 

81 0.9 12 0.0001 6 1 128 82 88 

82 0.5 12 
1.00E-

05 3 2 128 84 87 

83 0.9 6 0.0001 3 2 128 85 87 

84 0.9 12 
1.00E-

05 3 2 64 85 92 



105 

85 0.9 12 0.001 6 2 64 87 90 

86 0.99 12 0.001 6 2 128 90 138 

87 0.9 6 0.0001 3 1 64 92 81 

88 0.9 12 
1.00E-

05 6 1 64 93 106 

89 0.9 6 0.001 6 1 128 94 96 

90 0.99 12 0.001 3 2 128 98 204 

91 0.9 6 0.0001 3 1 128 99 117 

92 0.99 12 
1.00E-

05 6 2 128 101 100 

93 0.99 12 
1.00E-

05 6 2 64 103 112 

94 0.9 6 0.0001 6 2 128 104 133 

95 0.9 12 
1.00E-

05 6 1 128 105 128 

96 0.9 6 0.001 6 1 64 107 141 

97 0.99 6 0.0001 3 2 128 115 166 

98 0.9 6 0.0001 6 1 64 129 219 

99 0.9 6 0.0001 6 1 128 131 181 

100 0.99 12 0.0001 6 2 128 131 366 

101 0.9 12 
1.00E-

05 3 1 128 137 115 

102 0.99 12 0.0001 6 1 128 144 270 

103 0.99 12 0.0001 3 1 128 150 282 

104 0.99 12 0.001 6 1 128 152 444 

105 0.9 12 
1.00E-

05 3 1 64 156 141 

106 0.99 6 
1.00E-

05 6 2 128 156 471 

107 0.99 6 0.0001 6 1 128 160 180 

108 0.99 6 0.0001 6 1 64 173 177 

109 0.99 12 0.0001 6 2 64 190 566 

110 0.9 6 
1.00E-

05 3 1 128 195 139 

111 0.99 6 0.0001 3 2 64 207 351 

112 0.99 12 0.001 3 1 128 213 696 

113 0.99 6 0.0001 6 2 64 221 623 

114 0.99 12 0.0001 3 1 64 224 434 
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115 0.9 6 
1.00E-

05 3 1 64 234 165 

116 0.99 6 
1.00E-

05 3 2 128 268 185 

117 0.99 6 0.0001 3 1 128 274 353 

118 0.99 12 
1.00E-

05 3 1 64 284 227 

119 0.99 12 
1.00E-

05 3 1 128 284 232 

120 0.99 6 0.0001 6 2 128 294 800 

121 0.99 6 
1.00E-

05 3 1 128 305 206 

122 0.99 12 
1.00E-

05 3 2 128 307 260 

123 0.99 6 0.0001 3 1 64 308 568 

124 0.99 6 0.001 3 2 64 341 862 

125 0.99 12 
1.00E-

05 6 1 128 341 1165 

126 0.99 6 0.001 3 1 128 344 1054 

127 0.99 12 0.001 6 1 64 347 1110 

128 0.99 6 0.001 6 1 128 354 1174 

129 0.99 6 
1.00E-

05 3 2 64 361 289 

130 0.99 12 0.001 3 2 64 364 1156 

131 0.99 12 
1.00E-

05 6 1 64 369 1188 

132 0.99 6 0.001 6 2 128 370 1191 

133 0.99 12 0.001 3 1 64 391 1017 

134 0.99 6 0.001 6 2 64 400 1076 

135 0.99 6 0.001 3 1 64 403 1243 

136 0.99 6 0.001 3 2 128 424 1029 

137 0.99 6 
1.00E-

05 3 1 64 496 931 

138 0.99 12 0.0001 6 1 64 504 1216 

139 0.99 12 
1.00E-

05 3 2 64 655 1117 

140 0.99 6 
1.00E-

05 6 1 128 728 1536 

141 0.99 6 
1.00E-

05 6 2 64 1104 1554 

142 0.99 6 0.001 6 1 64 1129 2038 
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143 0.99 12 0.001 6 2 64 1184 1985 

144 0.99 6 
1.00E-

05 6 1 64 1263 2072 
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Appendix 4: Max-pressure Hyperparameter Tuning Results for 

Single Intersection Network 

ID Green Duration Mean (seconds) Standard Deviation (seconds) 

1 7 56 22 

2 9 58 22 

3 8 58 24 

4 12 59 25 

5 11 60 25 

6 10 60 26 

7 6 59 29 

8 5 61 34 

9 13 61 35 

10 14 61 36 

11 16 63 39 

12 15 66 49 

13 18 70 58 

14 17 71 58 

15 20 75 69 

16 19 76 71 

17 21 79 77 

18 22 81 81 

19 24 82 82 

20 23 84 85 

21 25 84 87 
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Appendix 5: Uniform Hyperparameter Tuning Results for Single 

Intersection Network 

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds) 

1 21 81 39 

2 22 81 39 

3 23 82 39 

4 25 84 40 

5 24 84 42 

6 16 82 50 

7 19 84 48 

8 17 84 52 

9 18 85 53 

10 20 86 52 

11 14 84 55 

12 15 89 62 

13 12 95 75 

14 13 96 74 

15 11 106 87 

16 10 123 106 

17 9 125 105 

18 8 164 141 

19 7 170 144 

20 6 202 168 

21 5 250 203 
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Appendix 6: Webster’s Hyperparameter Tuning Results for Single 

Intersection Network 

     

ID 
Max Cycle Length 

(seconds) 
Min Cycle Length 

(seconds) 
Time Interval 

(seconds) 
Satuation 
Flow Rate 

Mean 
(seconds) 

Standard 
Deviation 
(seconds) 

1 200 60 600 0.38 74 42 

2 180 40 600 0.38 75 44 

3 160 60 600 0.38 75 45 

4 160 40 600 0.38 75 48 

5 200 40 600 0.44 74 49 

6 200 40 1800 0.44 75 48 

7 180 60 600 0.38 76 49 

8 160 60 600 0.44 75 51 

9 180 40 1800 0.44 76 51 

10 200 40 600 0.38 76 51 

11 160 40 600 0.44 76 52 

12 180 40 600 0.44 75 53 

13 160 40 600 0.3 80 49 

14 180 40 600 0.3 80 49 

15 160 40 1800 0.44 77 53 

16 160 80 600 0.38 78 52 

17 180 60 600 0.44 76 54 

18 160 40 900 0.44 76 55 

19 160 60 900 0.3 80 51 

20 160 80 600 0.3 81 50 

21 200 60 900 0.38 77 54 

22 160 40 900 0.38 78 54 

23 160 60 600 0.3 81 52 

24 180 40 900 0.44 77 56 

25 180 60 900 0.38 78 55 

26 200 60 600 0.3 83 50 
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27 160 40 900 0.3 80 54 

28 180 40 900 0.38 79 55 

29 180 60 600 0.3 83 51 

30 200 40 600 0.3 83 52 

31 200 40 900 0.3 82 53 

32 200 40 900 0.38 79 56 

33 200 60 600 0.44 78 58 

34 200 80 600 0.3 84 52 

35 160 40 1800 0.38 79 58 

36 180 40 900 0.3 82 55 

37 180 40 1800 0.38 79 58 

38 180 60 900 0.44 78 59 

39 180 80 600 0.3 84 53 

40 200 40 1800 0.38 80 58 

41 160 60 900 0.38 81 58 

42 180 80 600 0.38 82 57 

43 200 60 900 0.3 84 55 

44 180 80 900 0.3 84 56 

45 200 40 900 0.44 78 62 

46 160 40 1800 0.3 83 59 

47 160 80 600 0.44 81 62 

48 200 80 600 0.38 83 60 

49 180 80 600 0.44 81 63 

50 180 60 900 0.3 85 60 

51 200 80 600 0.44 81 64 

52 160 80 900 0.3 85 61 

53 180 40 1800 0.3 84 62 

54 160 60 1800 0.3 85 62 

55 200 60 900 0.44 81 66 

56 200 60 1800 0.3 86 63 

57 200 80 900 0.3 87 62 

58 180 60 1800 0.3 86 64 

59 200 60 1800 0.38 84 68 
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60 160 60 900 0.44 83 70 

61 200 80 900 0.38 85 69 

62 160 80 900 0.38 85 70 

63 200 40 1800 0.3 88 67 

64 180 60 1800 0.44 85 72 

65 160 60 1800 0.44 85 73 

66 180 80 900 0.38 87 72 

67 160 60 1800 0.38 87 74 

68 180 60 1800 0.38 88 75 

69 200 60 1800 0.44 87 76 

70 200 80 1800 0.3 90 74 

71 160 80 900 0.44 89 80 

72 180 80 1800 0.3 92 77 

73 200 80 900 0.44 90 81 

74 180 80 900 0.44 91 82 

75 160 80 1800 0.3 94 81 

76 200 80 1800 0.38 92 86 

77 160 80 1800 0.38 94 88 

78 180 80 1800 0.38 95 88 

79 180 80 1800 0.44 94 90 

80 160 80 1800 0.44 95 92 

81 200 80 1800 0.44 97 94 
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Appendix 7: Hyperparameter Tuning Results: DQN in Corridor 

Network with 6,000 Traffic Demand and Incident 
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1 128 0.1 6 1.00E-04 1.00E-07 6 800000 2 128 5000 68 55 

2 128 0.1 6 1.00E-05 1.00E-07 6 800000 2 128 5000 67 86 

3 128 0.5 6 1.00E-04 1.00E-07 6 800000 2 128 5000 66 90 

4 128 0.9 6 1.00E-04 1.00E-07 6 800000 2 128 5000 73 90 

5 128 0.9 6 1.00E-05 1.00E-07 6 800000 2 128 5000 77 96 

6 128 0.7 6 1.00E-03 1.00E-07 6 800000 2 128 5000 70 107 

7 128 0.1 6 1.00E-03 1.00E-07 6 800000 2 128 5000 71 111 

8 128 0.7 6 1.00E-04 1.00E-07 6 800000 2 128 5000 72 116 

9 128 0.5 6 1.00E-05 1.00E-07 6 800000 2 128 5000 72 117 

10 128 0.9 6 0.001 1.00E-07 6 800000 2 128 5000 80 118 

11 128 0.5 6 1.00E-03 1.00E-07 6 800000 2 128 5000 76 129 

12 128 0.7 6 1.00E-05 1.00E-07 6 800000 2 128 5000 79 139 
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Appendix 8: Hyperparameter Tuning Results: Max-pressure in 

Corridor Network with 6,000 Traffic Demand and Incident 

ID Green Duration Mean (seconds) Standard Deviation (seconds) 

1 5 66 50 

2 23 72 73 

3 18 71 87 

4 17 73 93 

5 9 76 93 

6 22 74 97 

7 21 75 97 

8 11 76 102 

9 19 78 108 

10 14 78 112 

11 20 80 110 

12 16 77 116 

13 7 78 117 

14 15 79 116 

15 12 80 116 

16 13 81 118 

17 25 82 118 

18 10 82 122 

19 8 81 126 

20 6 82 135 

21 24 85 135 
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Appendix 9: Hyperparameter Tuning Results: Uniform in Corridor 

Network with 6,000 Traffic Demand and Incident 

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds) 

1 14 91 92 

2 24 99 84 

3 17 98 106 

4 5 109 96 

5 16 96 110 

6 13 98 124 

7 18 103 120 

8 9 99 125 

9 11 98 127 

10 23 106 119 

11 10 99 127 

12 15 104 134 

13 20 107 134 

14 22 112 146 

15 25 115 143 

16 12 105 154 

17 19 112 152 

18 7 113 157 

19 8 112 158 

20 21 116 159 

21 6 125 161 
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Appendix 10: Hyperparameter Tuning Results: Webster’s in 

Corridor Network with 6,000 Traffic Demand and Incident 

ID 
Max Cycle Length 

(seconds) 
Min Cycle Length 

(seconds) 
Time Interval 

(seconds) 
Satuation 
Flow Rate 

Mean 
(seconds) 

Standard 
Deviation 
(seconds) 

1 180 40 1800 0.44 77 71 

2 160 40 600 0.3 87 66 

3 160 40 600 0.38 78 83 

4 180 40 600 0.38 81 88 

5 180 80 1800 0.3 83 87 

6 160 60 600 0.38 83 91 

7 180 80 900 0.3 85 94 

8 200 40 900 0.3 81 100 

9 180 60 900 0.3 82 100 

10 200 60 900 0.38 82 101 

11 160 60 1800 0.3 85 101 

12 180 40 900 0.38 83 103 

13 160 80 1800 0.38 86 102 

14 160 60 1800 0.38 84 105 

15 180 80 900 0.38 87 103 

16 200 40 900 0.38 83 107 

17 200 80 1800 0.3 86 104 

18 200 80 1800 0.44 87 103 

19 200 80 1800 0.38 86 105 

20 160 60 900 0.3 86 107 

21 200 60 600 0.3 86 107 

22 200 40 600 0.3 88 106 

23 200 60 1800 0.3 88 110 

24 180 40 1800 0.3 86 113 

25 200 60 900 0.44 86 115 

26 200 80 900 0.44 87 114 

27 160 60 600 0.3 88 114 

28 180 60 1800 0.44 86 116 
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29 200 60 600 0.44 86 116 

30 160 40 1800 0.38 86 117 

31 160 80 1800 0.44 89 114 

32 180 80 900 0.44 88 115 

33 160 80 900 0.3 91 114 

34 180 60 600 0.38 89 116 

35 180 60 1800 0.3 87 119 

36 180 40 900 0.44 88 120 

37 160 40 900 0.38 88 121 

38 180 80 600 0.44 90 120 

39 200 60 1800 0.38 87 123 

40 180 60 600 0.44 90 121 

41 200 80 600 0.44 89 122 

42 160 40 1800 0.3 89 123 

43 160 40 900 0.44 89 124 

44 200 40 1800 0.3 89 124 

45 160 40 1800 0.44 88 126 

46 180 80 1800 0.38 93 121 

47 160 60 900 0.38 89 126 

48 160 80 1800 0.3 90 125 

49 200 60 600 0.38 90 125 

50 180 40 600 0.3 90 126 

51 180 60 600 0.3 90 126 

52 200 40 1800 0.38 89 127 

53 200 60 900 0.3 90 126 

54 160 40 900 0.3 92 126 

55 200 80 600 0.38 91 127 

56 200 80 900 0.38 91 127 

57 160 60 900 0.44 91 129 

58 180 40 900 0.3 91 129 

59 200 40 600 0.38 89 131 

60 180 60 1800 0.38 89 132 

61 160 60 1800 0.44 89 133 
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62 180 80 600 0.3 92 130 

63 160 60 600 0.44 91 132 

64 200 40 1800 0.44 90 133 

65 180 60 900 0.38 91 133 

66 200 80 600 0.3 95 130 

67 160 80 900 0.38 93 133 

68 160 80 600 0.3 95 134 

69 200 40 600 0.44 91 138 

70 160 80 600 0.38 94 137 

71 180 80 1800 0.44 94 140 

72 200 60 1800 0.44 94 142 

73 160 80 900 0.44 96 142 

74 160 40 600 0.44 94 145 

75 160 80 600 0.44 97 142 

76 200 40 900 0.44 96 143 

77 200 80 900 0.3 100 145 

78 180 40 600 0.44 97 149 

79 180 80 600 0.38 100 149 

80 180 40 1800 0.38 97 155 

81 180 60 900 0.44 100 158 
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Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid 

with 6,000 Traffic Demand and Incident 
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1 128 0.5 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 99 169 

2 128 0.5 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 107 203 

3 128 0.9 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 118 231 

4 128 0.5 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 114 238 

5 128 0.9 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 138 216 

6 128 0.7 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 116 251 

7 128 0.7 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 131 290 

8 128 0.9 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 148 283 

9 128 0.7 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 148 307 
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Appendix 12: Hyperparameter Tuning Results: Max-pressure in 2x2 

Grid Network with 6,000 Traffic Demand and Incident 

ID Green Duration Mean (seconds) Standard Deviation (seconds) 

1 24 97 101 

2 23 105 132 

3 6 104 135 

4 9 106 135 

5 16 109 144 

6 5 108 155 

7 17 111 152 

8 19 109 169 

9 15 110 169 

10 12 113 172 

11 8 118 193 

12 7 120 209 

13 11 125 220 

14 18 126 234 

15 25 129 231 

16 21 133 235 

17 14 130 240 

18 13 130 244 

19 20 140 283 

20 10 155 327 

21 22 155 336 
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Appendix 13: Hyperparameter Tuning Results: Uniform in 2x2 Grid 

Network with 6,000 Traffic Demand and Incident 

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds) 

1 8 110 110 

2 23 129 116 

3 10 118 143 

4 16 129 137 

5 20 130 138 

6 13 127 146 

7 15 129 144 

8 12 125 152 

9 24 137 140 

10 18 133 145 

11 25 138 140 

12 19 133 146 

13 21 138 157 

14 14 139 180 

15 22 146 178 

16 9 137 199 

17 17 152 245 

18 7 141 271 

19 11 150 263 

20 5 158 272 

21 6 163 270 
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Appendix 14: Hyperparameter Tuning Results: Webster’s in 2x2 

Grid Network with 6,000 Traffic Demand and Incident 

ID 
Max Cycle 

Length (seconds) 
Min Cycle 

Length (seconds) 
Time Interval 

(seconds) 
Saturation 
Flow Rate 

Mean 
(seconds) 

Standard 
Deviation 
(seconds) 

1 180 60 600 0.38 105 110 

2 200 80 600 0.38 109 111 

3 160 60 900 0.38 106 120 

4 160 40 1800 0.3 106 125 

5 160 80 600 0.38 111 125 

6 180 80 600 0.44 111 126 

7 160 80 900 0.44 111 127 

8 180 80 1800 0.3 110 129 

9 160 40 900 0.38 109 135 

10 200 80 900 0.44 114 131 

11 160 40 600 0.3 111 137 

12 180 40 900 0.44 110 139 

13 160 60 900 0.3 111 139 

14 200 80 1800 0.44 113 137 

15 180 40 600 0.38 112 143 

16 160 40 600 0.44 113 143 

17 160 40 1800 0.44 113 143 

18 180 80 900 0.44 118 142 

19 200 40 600 0.44 113 149 

20 200 80 600 0.44 114 151 

21 200 40 900 0.3 112 155 

22 160 60 1800 0.44 111 158 

23 160 40 600 0.38 116 154 

24 180 40 600 0.3 119 160 

25 180 60 900 0.38 116 167 

26 200 60 600 0.38 116 169 

27 160 40 1800 0.38 120 166 

28 200 80 1800 0.38 118 168 
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29 180 60 1800 0.44 113 175 

30 160 60 1800 0.3 122 168 

31 180 80 900 0.3 123 168 

32 160 40 900 0.3 119 180 

33 180 60 1800 0.3 123 177 

34 180 60 1800 0.38 119 181 

35 200 60 900 0.38 119 181 

36 180 60 600 0.44 119 184 

37 160 60 900 0.44 118 187 

38 160 40 900 0.44 119 187 

39 180 80 600 0.3 128 179 

40 200 80 600 0.3 125 182 

41 180 40 900 0.38 120 188 

42 180 40 1800 0.3 120 191 

43 200 60 1800 0.44 124 192 

44 160 80 900 0.38 126 192 

45 200 60 1800 0.3 124 196 

46 160 60 600 0.3 125 196 

47 200 60 1800 0.38 125 197 

48 180 80 600 0.38 124 201 

49 200 40 600 0.3 122 204 

50 200 60 600 0.3 126 203 

51 180 40 600 0.44 128 204 

52 160 60 600 0.44 123 210 

53 180 80 1800 0.44 127 207 

54 180 40 900 0.3 131 207 

55 200 80 1800 0.3 127 211 

56 180 60 900 0.44 127 212 

57 180 60 900 0.3 133 213 

58 200 60 600 0.44 130 216 

59 160 60 1800 0.38 128 220 

60 160 80 600 0.3 129 221 

61 200 60 900 0.3 130 221 
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62 200 60 900 0.44 135 219 

63 200 80 900 0.3 130 225 

64 180 40 1800 0.38 129 231 

65 180 80 900 0.38 135 226 

66 180 60 600 0.3 133 234 

67 160 80 1800 0.44 136 234 

68 160 80 900 0.3 136 238 

69 200 40 600 0.38 136 242 

70 160 80 600 0.44 142 239 

71 180 40 1800 0.44 139 248 

72 200 40 900 0.44 138 253 

73 200 40 1800 0.44 140 252 

74 200 40 900 0.38 139 257 

75 200 40 1800 0.38 141 256 

76 160 80 1800 0.38 150 255 

77 200 80 900 0.38 144 281 

78 200 40 1800 0.3 149 277 

79 180 80 1800 0.38 151 279 

80 160 80 1800 0.3 153 290 

81 160 60 600 0.38 151 300 
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Appendix 15: Hyperparameter Tuning Results For DQN in 2x2 Grid 

Network with 6,000 Traffic Demand and No Incident 
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1 128 0.5 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 68 30 

2 128 0.5 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 69 30 

3 128 0.7 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 69 30 

4 128 0.5 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 70 31 

5 128 0.7 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 70 31 

6 128 0.7 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 71 32 

7 128 0.9 6 1.00E-04 1.00E-07 6 1600000 2 128 5000 71 32 

8 128 0.9 6 1.00E-03 1.00E-07 6 1600000 2 128 5000 81 42 

9 128 0.9 6 1.00E-05 1.00E-07 6 1600000 2 128 5000 89 53 
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Appendix 16: Hyperparameter Tuning Results For Max-pressure in 

2x2 Grid Network with 6,000 Traffic Demand and No Incident 

ID Green Duration Mean (seconds) Standard Deviation (seconds) 

1 5 80 36 

2 6 81 37 

3 7 81 37 

4 8 83 38 

5 9 85 39 

6 17 84 40 

7 20 84 40 

8 16 85 41 

9 18 85 41 

10 19 85 41 

11 21 85 41 

12 23 85 41 

13 10 86 41 

14 11 86 41 

15 22 85 42 

16 24 85 42 

17 25 85 42 

18 12 86 42 

19 14 86 42 

20 15 86 42 

21 13 87 42 
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Appendix 17: Hyperparameter Tuning Results For Uniform in 2x2 

Grid Network with 6,000 Traffic Demand and No Incident 

ID Green Duration (seconds) Mean (seconds) Standard Deviation (seconds) 

1 7 90 40 

2 9 91 41 

3 10 93 41 

4 8 93 42 

5 11 96 44 

6 12 97 45 

7 6 96 48 

8 13 100 47 

9 14 103 49 

10 5 103 52 

11 15 105 51 

12 16 107 53 

13 17 108 54 

14 18 109 55 

15 19 109 55 

16 20 110 57 

17 21 112 58 

18 22 113 59 

19 23 114 60 

20 24 115 62 

21 25 117 63 
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Appendix 18: Hyperparameter Tuning Results For Websters in 2x2 

Grid Network with 6,000 Traffic Demand and No Incident 

ID 
Max Cycle Length 

(seconds) 
Min Cycle Length 

(seconds) 
Time Interval 

(seconds) 
Satuation 
Flow Rate 

Mean 
(seconds) 

Standard 
Deviation 
(seconds) 

1 180 40 1800 0.38 87 39 

2 180 40 1800 0.44 87 39 

3 160 40 600 0.38 87 40 

4 160 40 600 0.44 87 40 

5 160 40 900 0.38 87 40 

6 180 40 600 0.44 87 40 

7 180 40 900 0.38 87 40 

8 180 40 900 0.44 87 40 

9 180 40 1800 0.3 87 40 

10 200 40 600 0.38 87 40 

11 200 40 900 0.44 87 40 

12 200 40 1800 0.38 87 40 

13 200 40 1800 0.44 87 40 

14 160 40 1800 0.3 88 40 

15 160 40 1800 0.38 88 40 

16 160 40 1800 0.44 88 40 

17 200 40 1800 0.3 88 40 

18 160 40 900 0.3 88 41 

19 160 40 900 0.44 88 41 

20 160 60 1800 0.44 88 41 

21 180 40 600 0.3 88 41 

22 180 40 600 0.38 88 41 

23 180 40 900 0.3 88 41 

24 200 40 600 0.3 88 41 

25 200 40 600 0.44 88 41 

26 200 40 900 0.3 88 41 

27 200 40 900 0.38 88 41 

28 200 60 900 0.38 89 41 
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29 200 60 1800 0.3 88 42 

30 200 60 1800 0.44 88 42 

31 160 40 600 0.3 89 42 

32 160 60 600 0.38 89 42 

33 160 60 600 0.44 89 42 

34 160 60 900 0.44 89 42 

35 160 60 1800 0.3 89 42 

36 180 60 600 0.38 89 42 

37 180 60 600 0.44 89 42 

38 180 60 900 0.3 89 42 

39 180 60 900 0.44 89 42 

40 180 60 1800 0.3 89 42 

41 180 60 1800 0.38 89 42 

42 180 60 1800 0.44 89 42 

43 200 60 600 0.38 89 42 

44 200 60 900 0.3 89 42 

45 200 60 1800 0.38 89 42 

46 160 60 900 0.3 89 43 

47 160 60 900 0.38 89 43 

48 160 60 1800 0.38 89 43 

49 180 60 900 0.38 89 43 

50 200 60 600 0.3 89 43 

51 200 60 900 0.44 89 43 

52 160 60 600 0.3 90 43 

53 180 60 600 0.3 90 43 

54 200 60 600 0.44 90 43 

55 160 80 600 0.3 93 46 

56 160 80 900 0.3 93 46 

57 160 80 1800 0.3 93 46 

58 160 80 1800 0.38 93 46 

59 160 80 1800 0.44 93 46 

60 180 80 600 0.3 93 46 

61 180 80 1800 0.3 93 46 
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62 180 80 1800 0.38 93 46 

63 180 80 1800 0.44 93 46 

64 200 80 900 0.38 93 46 

65 200 80 900 0.44 93 46 

66 200 80 1800 0.3 93 46 

67 200 80 1800 0.38 93 46 

68 200 80 1800 0.44 93 46 

69 180 80 900 0.38 93 47 

70 160 80 600 0.38 94 47 

71 160 80 600 0.44 94 47 

72 160 80 900 0.38 94 47 

73 160 80 900 0.44 94 47 

74 180 80 600 0.38 94 47 

75 180 80 600 0.44 94 47 

76 180 80 900 0.3 94 47 

77 180 80 900 0.44 94 47 

78 200 80 600 0.3 94 47 

79 200 80 600 0.38 94 47 

80 200 80 600 0.44 94 47 

81 200 80 900 0.3 94 47 
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	SUMMARY
	 

	Traffic signal control is a crucial element of urban mobility that profoundly influences transportation network efficiency and safety. Traditional traffic signal control systems rely on fixed-time or actuated signal timings, often failing to adapt to dynamic traffic demands and congestion patterns. This technical report explores the application of Reinforcement Learning (RL) algorithms to traffic signal control, aiming to enhance traffic flow efficiency and alleviate congestion. 
	The research develops a simulation model of a signalized intersection and trains RL agents to dynamically adjust signal timings based on real-time traffic conditions. These RL agents are designed to learn from experience, adapt to changing traffic patterns, and optimize traffic flow, even in scenarios with unexpected traffic incidents. 
	The study examines the benefits of RL algorithms in optimizing traffic signal control, both in scenarios with and without traffic incidents. To achieve this, an incident generation module is integrated into an open-source traffic signal performance simulation framework that relies on the Simulation of Urban MObility SUMO software. This module introduces the presence of emergency response vehicles and randomly generates traffic incidents within the network. By exposing RL agents to this environment, they can
	Initially, the research focuses on a single intersection scenario, employing the DQN algorithm to form the RL agent traffic signal controller. The training process is enhanced through the utilization of experience replay and target network techniques, addressing the limitations of the DQN algorithm. Hyperparameter tuning identifies the optimal parameter combination for training, with results showcasing the superiority of DQN over other controllers in terms of system-wide and intersection-specific queue dist
	The study is subsequently extended to encompass a small corridor featuring two intersections and a grid network with a 2x2 intersection configuration. The incident generation module introduces various traffic scenarios to the RL agent, and once again, hyperparameter tuning confirms the DQN model's effectiveness in reducing congestion and enhancing system performance. Robustness testing under varying demands demonstrates the consistent performance of the DQN model. 
	In summary, this technical report underscores the potential of RL algorithms in optimizing traffic signal control, both in scenarios with and without traffic incidents. The incident generation module creates a realistic learning environment for RL agents, resulting in improved system performance and reduced congestion. Furthermore, the importance of hyperparameter tuning is emphasized as a critical component in establishing a strong foundation for RL training processes.  
	  
	Chapter 1.  
	Chapter 1.  
	Introduction
	 

	Traffic signal systems play an essential role in the transportation network to minimize the number of traffic accidents and maintain orderly traffic flow. Traffic signal control methods include three broad categories: pretimed control, actuated control, and adaptive control. Pretimed control has fixed cycle lengths and phasing, so it is not responsive to traffic demand fluctuations. Actuated control is designed to respond to variable traffic demands but the nature of the potential response is  constrained b
	With the explosive development of computing power and data accessibility, as well as the advanced development of artificial intelligent (AI), there are more possibilities to improve existing traffic signal control performance (Winston, 1992; Russell and Norvig, 2002). Three categories of AI technologies have been used commonly: supervised learning, unsupervised learning, and reinforcement learning. Because of the characteristics of the traffic signal control problems, reinforcement learning fits our needs  
	Deep Q-learning is one of the most commonly used methods in reinforcement learning because of its ease of implementation and better performance as the data scale increases. Deep Q-leaning is a combination of Q-learning and deep neural network. Q-learning represents a method to use a determined or approximated Q-table to guide the actions of the agents. With the training process, the Q-table is updated and reaches convergence so that every action taken in the future will be the best choice of the agent in or
	Combined with deep learning, reinforcement learning can explore more complicated relationships between the agents and their environment to provide potentially better performance (LeCun et al., 2015; Goodfellow et al., 2016; Kamilaris and Prenafeta-Boldú, 2018). Deep learning relies on a neural network, which mimics the thinking and decision-making process of neuron activation (Wang, 2003; Abiodun et al., 2018). The more layers of the neural network used, the more complicated patterns between the inputs and 
	For a complicated problem, a deterministic Q-table is impossible to generate so a deep neural network is utilized to approximate the Q-table. Rather than having a concrete Q-table, deep Q-learning uses the neural network between the inputs and outputs to approximately 
	represent the Q-table. Therefore, the training process will update the coefficients associated with the neural network to improve the prediction accuracy.  
	Although considerable research has focused on using deep Q-learning to improve the performance of actuated traffic signals in a network, one key question has not been targeted yet. That is how disruptions within the network should be addressed. The concern is that traffic signal control based on deep Q-learning and normal traffic condition settings might not be able to adequately respond to traffic flow disruptions caused by traffic incidents (crashes, disabled vehicles or objects dropped on the roadway). T
	1.1 Problem Statement 
	Without testing the performance when traffic incidents occur, the robustness of the deep Q-learning traffic signal control for the network cannot be guaranteed. When traffic incidents occur, the network will suffer a sharp and temporary capacity shortage on the involved link(s) causing diversion to other links. Traffic signal timing is the only practical means of responding to incident disruptions to reduce the negative impact of traffic incidents. Due to the complexity of the network problems, operators fr
	The core problem of the traffic incident case is sudden unmatched travel demand and supply. If traffic signals can utilize the real-time objective inputs from their environment, including traffic flows and intersection performance (e.g., queue length and total control delays), to take actions quickly enough, the network performance could be improved immediately. 
	Reinforcement learning methods promise to provide solutions for this kind of problem. Each AI agent keeps exploring the relationship between traffic signal control and vehicle queue length in its intersection and once the knowledge collected is enough to produce an accurate approximation, the action chosen by the AI agent (maintain the current phase or shift to another phase) will maximize the improvement of the intersection performance in terms of the chosen measure of effectiveness such as queue length or
	If the agent has never experienced traffic incident impacts, it must encounter the situation enough times to “understand” the impact of  incidents and how to take optimal actions responsively. Creating traffic incidents in the real network to train the deep Q-learning algorithm is problematic so the simulation method comes in handy. There are no available simulation tools on the market to allow users to combine the application of reinforcement learning and traffic network incidents. 
	This study is to fill this gap. By developing an incident responsive network in an open-source microscopic simulator and exploring the advanced deep Q-learning method, a robust AI-assisted actuated traffic signal control system will be developed.  
	1.2 Objectives 
	The objectives of this dissertation include the following key components: 
	1. Build a traffic incident responsive simulator based on an open-source microscopic traffic simulation software system. This simulator will characterize an incident occurring in the network and blocking a lane that is part of a link. In addition, the simulator will simulate the impact of emergency service vehicles (an abstraction of police cars, EMS, etc.) in response to the incident. In this way, the full impact of the incident and the rescue process can be evaluated quantitatively based on traditional me
	2. A deep Q-learning model will be developed and trained with the data from the simulation process. The proposed deep Q-learning method will take advantage of the most advanced methods in the market, including the prioritized experience replay and dueling network. The deep Q-learning model will be trained in a single intersection without traffic incidents.  
	3. The well-trained deep Q-learning model will be applied to all the traffic signals of a grid network where all intersections are identical to the single intersection in the previous study and the network will encounter traffic incidents occurring randomly in time and location. Transfer learning methods will be applied to reduce the calculation tasks to allow the deep Q-learning model to perform well in a different environment.  
	1.3 Expected Contributions 
	To achieve these goals, this study explores the application of RL, specifically Q-learning integrated with deep neural networks, to enhance traffic signal control. It explores RL's capacity to enhance traffic flow and alleviate congestion, effectively addressing the shortcomings of conventional fixed-time and actuated signal systems. 
	1.4 Report Overview 
	This dissertation is organized as follows. Chapter 1 describes the motivation, problem statement, objectives, and research scope. Chapter 2 is a comprehensive literature review of the history of traffic signal control, the common framework of traffic signal control, and the most advanced research on traffic signal control based on reinforcement learning methods. Chapter 3 presents the proposed deep Q-learning model as well as advanced tools to improve its performance. Chapter 4 explains the open-source micr
	Chapter 2.  
	Chapter 2.  
	Literature Review
	 

	2.1 Introduction 
	An intersection is where vehicle paths cross sharing a common space. In earlier days, there were no traffic control devices to facilitate the common space sharing, so users had to compete for the right of way. To improve safety and facilitate orderly space sharing, traffic control devices were introduced.  Traffic control signals are commonly used by agencies to improve intersection safety and operational efficiency. 
	Generally, signalized intersections accommodate all ground transportation modes, including passenger cars, bicycles, and pedestrians. However, the purpose of this paper is building fundamental reinforcement learning traffic signal control based on simulation methods so only passenger cars are considered throughout the paper. 
	The following section summarizes important literature for the development of traffic signal control methods, including pretimed, actuated, adaptive, and machine learning control.  
	2.2 Traditional Traffic Signal Control Methods 
	The basic logic behind traffic signal timing is to provide optimal amounts of green signal time to conflicting movements to reduce conflicts and decrease the likelihood of traffic accidents and to improve efficiency usually measured by fewer delays. 
	There are three types of traffic signal control methods commonly used today: pretimed, actuated, and adaptive. None of them is superior to the others since they perform different roles for different types of intersections as well as traffic arrival patterns. Therefore, all of them can have a significant impact on the traffic network in terms of safety and efficiency. 
	2.2.1 Pretimed Signal Control 
	 Pretimed traffic signal control is defined as a predetermined traffic signal schema with fixed green time for each phase as well as fixed cycle length and fixed phase patterns. The signal cycle length needs to be tuned to minimize the control delay and the green time split for each approach is normally based on the flow ratios between different phases (Kell and Fullerton, 1991). 
	Pretimed traffic signal control methods are commonly used for both isolated intersections and networks (Bell, 1992; Slinn et al., 1998). Webster proposed a closed-form formula to split the green time proportionally by taking into account the historical traffic flow ratios between phases (Webster, 1958). The cycle length is tuned based on the characteristics of the intersection to minimize the total delay. No real-time data from the field is required and the historical traffic flow needs to be aggregated.  
	Coordination of pretimed controllers to produce traffic progression can improve network efficiency decreasing unnecessary stops and reducing delays. The GreenWave was developed (Roess et al., 2004) as an extension of the Webster methods by considering the travel time at a chosen speed between intersections (called offset) to reduce numbers of vehicular stops. This 
	method requires all associated intersections to have the same cycle length, which is usually the maximum cycle length from all intersections. 
	Practitioners have developed different types of extensions of pretimed traffic signal control. For example, intersections could have different pretimed traffic signal schemes during different times of the day and different schemes for weekdays and weekends (Mirchandani and Head, 2001).  Instead of having only one signal plan for a specific intersection, as many as 20 different plans could be applied and could be automatically chosen by the signal controller based on either time of day or traffic demand (Roe
	Pretimed signal control is an offline method which means there is no need to collect any real-time information from the field. It relies on historical traffic data to adjust the green time split, cycle length, and phase patterns. It is easy to maintain compared to other more advanced traffic signal control methods which require field data, including flow and queue length to tune their parameters. Therefore, pretimed signal control is still the most commonly applied method in the traffic network. 
	2.2.2 Actuated Signal Control 
	Since traffic demand constantly varies, the basic objective of signal control is to accommodate demand variability.  Pretimed methods can address this variability by choosing among many stored timing plans by time of day or volume thresholds (if detection is provided).  Actuated signal control measures real time traffic flows for all actuated phases and is designed to be flexible enough to change green times in response to demand (Fellendorf, 1994).  Every actuated phase has a maximum green time so if deman
	Actuated signal control collects real time data from the intersection approaches, such as queue length or traffic flow, to extend the current phase duration or terminate the current phase to start the next phase as needed. In actuated traffic signal control, several key components could be varied, including phase sequences, green time for each phase, and cycle length, which does not coordinate with other adjacent intersections (Roess, 2004). 
	The benefits of implementing actuated signal control are obvious. It can adjust the current plan to the varied traffic conditions, such as flow fluctuation or changing traffic demand patterns, to minimize control delay and improve efficiency. It is recommended to use actuated traffic control in a non-oversaturated traffic flow scenario. Because if the traffic flow is approaching the capacity of the road and stable, especially during the peak hours, pretimed signal control programmed proportionally to the cr
	Semi-actuated control refers to actuated control with detectors only on the minor road so the green rests on the major road until a vehicle is detected on the minor road. In this way, the associated intersection can maintain the green time for the major road and also provide service to 
	the minor street when needed. This method is appropriate for intersections where the traffic pattern has a noticeable difference in volume from the major and minor roads. If the actuated green phase for the minor roads is called too many times, the vehicles from the major roads suffer significant delay and more stops, which is against the purpose of implementing the semi-actuated control. 
	Fully actuated control includes detectors for all signal phases and allows real time adjustment of the signal plan to accommodate traffic for all intersection approaches rather than only the minor roads. By taking into account real time traffic flow from detectors, the signal plan can extend or terminate any phase as needed. This helps the intersection to respond to varied traffic flow from all approaches (Lin, 1985). 
	Researchers have investigated methods of using actuated control in coordinated networks, however, as noted earlier, coordination methods generally require actuated control to limit the flexibility they are designed to provide.  Two famous fully actuated signal control methods are Self-Organizing Traffic Light (SOTL) and max pressure. Self-organization used here represents the concept of signal control for intersections in a network that can interact with each adjacent one and achieve dynamically a global op
	Max pressure control was introduced into actuated signal control (Varaiya, 2013). This method monitors the pressure from all approaches, as the difference between flow for incoming lanes and outgoing lanes of each approach, and chooses the maximum pressure releasing phase to allow the maximum number of vehicles to enter the intersection and hence ensure the minimum pressure for the phase duration. This method requires vehicle flow information from adjacent intersections as a precise measure of the pressure.
	Actuated control could be categorized into two broad classes, including isolated and coordinated. Isolated intersections with actuated control only focus on improving efficiency and safety of one intersection, while coordinated intersections will deploy a reasonable offset and other parameters to reduce the unnecessary stops and delay for the coordinated network.  
	Semi-actuated can be used for an arterial corridor since the major traffic flow would use the arterial street and minor cross streets would be served with green only when needed (Skabardonis, 1998). The majority of the green time and capacity should be assigned to the corridor rather than the minor movements. Fully actuated control would be most beneficial for isolated intersections where traffic demands from all approaches vary heavily. 
	Implementing actuated signal control to adjust the control plan in real-time has limitations. A complicated program must be provided for the controllers to take the inputs and adjust the control plan accordingly. The cost of installation is more expensive than pretimed 
	signal control and maintenance costs are another problem. The induction loop detectors commonly used in these methods are installed under the pavement surface and if the pavement structure moves either vertically or horizontally the inductance loop detector wires break and the cost of replacing them is not trivial.  
	2.2.3 Adaptive Signal Control 
	Adaptive signal control refers to the technology that collects real-time data from the installed detectors to dynamically determine green phase and its duration in response to current and predicted future traffic demands based on programmed algorithms to increase the performance of the intersections. 
	Adaptive signal control is considered to be advantageous over actuated signal control for providing lower control delay and better intersection throughput performance (Gayah, 2014). The key component of adaptive signal control is to dynamically adjust the parameters based on the future traffic flow prediction (Klein, 2001). The most famous traffic signal control frameworks based on adaptive signal control include TRANSYT, Split Cycle Offset Optimization Technique  (SCOOT), Sydney Coordinated Adaptive Traffi
	In 1969, Robertson proposed a fixed-time traffic signal control algorithm based on the traffic flow passing through a road network to minimize the sum of the average queues in the network (Robertson, 1969). It is an off-line method that uses macro-simulation since it relies on historic flow data. It was one of the earliest traffic signal control methods that relied on a digital computer program to help researchers and practitioners to optimize the traffic signal control, including offset and green time spli
	The core components in TRANSYT are based on cyclic flow profiles (CFP) that estimate queue lengths based on historic data so to evaluate the performance of alternative signal timings. The CFP measures the one-way traffic flow from one approach and averages the flow over a specific duration. The estimated queue length and clearing time from the CFP are used to predict the impact of offset and green splits to find the best signal timing parameters. 
	Based on the TRANSYT, SCOOT was introduced to overcome some of the limitations of TRANSYT (Hunt, 1981). As mentioned before, TRANSYT is an offline method and relies on historic data. In contrast, SCOOT takes advantage of technology development as vehicle sensors have become available. Detectors are installed upstream to obtain traffic flow information so to improve the estimation of queue length accuracy. In addition, since SCOOT relies on real-time traffic information and calculates the signal timing param
	SCATS was introduced in Sydney, Australia in 1990. It utilizes the traffic flow inputs collected by installed detectors to understand the real-time traffic. It also has a library that records the pre-defined signal plans based on the traffic flow patterns to help dynamically adjust the signal timing parameters in a short period. The adjustable parameters include phase split, cycle length, and offsets (Lowrie, 1990). SCATS has been implemented in Australia for controlling more than 1,800 signals and has achi
	In the early 80s, researchers at the University of Lowell with support from the U.S. Department of Transportation developed OPAC, varying signal timing plans dynamically to accommodate real-time traffic demand patterns. It ignores the cycle concept and only considers the split time of sequential phases by either extending the current phase or starting the next phase earlier (Gartner, 2002). Implementation of this method requires predetermining the phases for each intersection. To improve performance, OPAC c
	RHODES is another famous adaptive signal control framework that can be implemented for a distributed system. RHODES utilizes an hierarchical control structure for connecting different components in traffic signal optimizing problems, including network loading, network flow estimation, and traffic signal control activation by exploiting the modern technologies and availability of real-time data (Head, 1992). RHODES not only considers the software for traffic signal control, but also the hardware components, 
	To reduce the costs of installation and operation while keeping the benefits of traditional adaptive signal control frameworks, the Federal Highway Administration (FHWA) (Ghaman, 2007) developed ASC Lite to integrate the process of traffic flow monitoring and signal plan optimizing accordingly. ASC Lite focuses on linear and arterial networks. The developed control module has been included in the CORSIM simulation software for users to deploy and test their signal timing strategies. 
	Performance of ASC Lite has been evaluated (Shelby, 2008) by field implementation, including Gahanna, OH, Houston, TX, Bradenton, FL, and EI Cajon, CA. The evaluation shows that ASC Lite has been demonstrated effective in terms of reduction of delay, arterial travel time, fuel consumption, and vehicle stops. In addition, ASC Lite was also evaluated by field implementation in Albany, New York, showing that the system provided benefits of delay reduction in the core area of the analytical network, but not the
	In conclusion, adaptive signal control has attracted a large number of researchers and practitioners to develop various frameworks and test their performance in real scenarios. 
	Evolution of these strategies is mainly due to modern technologies and algorithms, including faster computing machines and more efficient mathematical algorithms. With the rapid development of learning algorithms and lower costs of data storage and computing, reinforcement learning has been adopted to improve signal control performance.  
	2.3 Reinforcement Learning Traffic Signal Control 
	Machine learning tackles the problems that relate to detecting patterns and drawing conclusions from historic experience. Reinforcement learning, one of the most famous machine learning techniques, focuses on optimization problems by directly converting input data into action choices without modeling the environment. For example, in the traffic signal control process, the adaptive control methods require the prediction of the queue length or vehicle arrival patterns from the adjacent network through mathema
	Reinforcement learning collects experience from the interaction between an agent and its environment. Without building a model for the environment, the agent could extract useful information from the environment and use trial and error to come up with a solution to improve its behavior to achieve a long-term goal (Sutton and Barto, 2018). 
	Reinforcement learning includes model-free and model-based algorithms. In our scenario, where traffic signal control responds to varying traffic demand, model-based algorithms will require modelers to pre-specify the models for the intersection as well as the vehicle arrival patterns, which is difficult. Therefore, model-free approaches achieve a significant focus in the traffic signal control field, especially Q-learning. The Q-learning agent, the signal controller, collects the state from its interacting 
	2.3.1 Isolated Intersections 
	Abdulhai (2003) proposed a simple yet powerful Q-learning model for traffic signal control associated with an isolated intersection. The traffic demand contains two straight movements, including east-west and north-south. The state includes the queue lengths from all approaches as well as the elapsed green time of the current phase. The traffic control agent can choose two actions, either remain in the current phase or shift to the next one. Cycle length was not fixed but minimum and maximum green splits ar
	controller performed on a par with the pretimed signal control, however, when the traffic becomes variable, the Q-learning controller reduced system delay by 40% on average. This research laid the foundation for implementing Q-learning in the traffic signal control field. 
	El-Tantawy et al. extended Abdulhai’s work by fine-tuning the parameters used in the Q-learning traffic signal control model with a real case study in Downtown Toronto in a simulation environment (El-Tantawy et al., 2014). The proposed model outperformed optimized pretimed traffic signal control and actuated signal control by saving about 50% average vehicle delay. 
	One limitation of the Q-learning signal controller mentioned above is that the model requires the full representation of the state collected from the intersection. If the model is extended to the network level, this method would not be able to be computed efficiently. To tackle this limitation, Prashanth and Shalabh (Prashanth, 2010) developed a Q-learning technique with a function approximation method to reduce the size of inputs and significantly reduce the computing time to get the model to converge to o
	Lu et al. evaluated the performance of Q-learning for an isolated intersection with transition curve theory to estimate the delay for each approach (Lu et al., 2008). The state is total delay for the single intersection. The action sets include four phases with 2 seconds interval alternation. The reward function is the same as the state, which is total intersection delay. The proposed model was compared with the fixed signal settings and the results show a car in the system can save 21 seconds per cycle. 
	Chin et al. also applied a Q-learning algorithm to an isolated intersection. The state is the different levels of queue length and the number of phases in the signal plan (Chin et al., 2011). Actions were defined by the green time choice of each phase in a 5-second duration. Rewards were measured by the number of vehicles in the queue from all approaches. Various traffic conditions including flow saturation levels were examined in the simulations. The results showed that total delay could be reduced even in
	2.3.2 Coordinated Intersections 
	Rather than focusing on improving the performance of adaptive signal control on an isolated intersection with the help of Q-learning algorithms, some research explored its benefits in the context of the transportation network with multiple intersections. 
	Balaji et al. designed a distributed multi-agent-based Q-learning traffic signal control for improving the existing adaptive signal control in an urban arterial network in the Central Business District of Singapore (29 intersections) to reduce the total delay and travel time (Balaji et al., 2010). Data collected from all intersections share information with adjacent intersections so the expected vehicle arrival patterns could be evaluated accurately. Parameters used in the model were fine-tuned with real-ti
	Simulation results showed significant delay reduction compared to other network traffic control systems. 
	Abdoos et al. explored the performance of multi-agent Q-learning for the network where peak traffic patterns do not appear and conventional traffic signal timing does not provide an efficient solution (Abdoos et al., 2011). Average queue length from all approaches in a fixed cycle was used as the state representation in the Q-learning model. Cycle time of all intersections remained the same during the optimization and the actions refer to the choice of remaining in the current phase or changing to the next 
	Abdoos et al. developed a two-level hierarchical control model based on Q-learning (Abdoos et al., 2014). The bottom level comprises multiple intersections from a smaller region in the network and performs Q-learning to optimize the signal timing plan individually, while the top-level implemented tile coding to reduce the size of the state from the bottom level and abstract the model to a computing degree that field implementation of the proposed multi-agent Q-learning model could be practical. A network wi
	2.3.3 Deep Q-learning 
	With the advent of the deep neural network, Q-learning has been improved and deep Q-learning models could yield more promising results. 
	With high-dimensional inputs available from intersections, such as camera images from surveillance cameras, simple Q-learning has difficulties representing the complex sensory inputs and actions and generalizing past experiences to new situations (Mnih, 2015). To mimic the human and animal brain learning process, a hierarchical neural network, termed deep neural network (DNN), was introduced to handle the extremely high complexity of input data and actions. Combined with Q-learning, deep Q-learning (DQN) wa
	Since the publication of DQN, its application in traffic signal control has been evaluated. Genders and Razavi developed a DQN with experience replay for optimizing the signal timing of an isolated intersection (Genders and Razavi , 2016). Due to the advantages of DNN which can handle information-dense inputs efficiently, the state represented in this research contains the discrete cell representation of the road segment. Three vectors associated with each cell, 
	including vehicle presence status, the speed of each vehicle, and the current traffic signal phase, were used as the state, forming an information-dense input. Instead of only considering the queue length or average vehicle delay normally applied in the Q-learning methods, this kind of information-dense input could help the agent learn more from the complex input and generalize the experience to the new situations better, achieving a faster convergence with less computing time with similar parameter setting
	Ge et al. proposed a cooperative DQN with Q-value transfer for multi-agent-based adaptive signal control (Ge et al., 2019). Individual intersections relied on the deep Q-learning model to optimize their performance respectively. The cooperative mechanism was triggered when the centralized control system combined the latest optimal performance of each intersection and transferred the Q-value from adjacent intersections for a quicker learning process and less computing time.  
	In conclusion, deep Q-learning either for a single intersection or a network with multiple intersections can improve model performance by taking into account more complex sensory data and actions at the expense of more computing time. However, both existing research for Q-learning and deep Q-learning fail to consider the network with traffic incidents and hence prevent practitioners from understanding their performance in this situation. 
	2.3.4 Traffic Incident Management in Traffic Signal Control 
	Traffic congestion can be classified into two categories: recurring and non-recurring. Recurring congestion is due to traffic demand pattern variations throughout the day, such as traffic demand in the peak hours that exceeds capacity. Recurring congestion tends to occur daily and allows traffic management personnel to seek solutions. Non-recurring congestion comes from special events, such as traffic incidents and activities that increase travel demand such as major sports events. Traffic incidents, for ex
	Traffic incident management (TIM) aims to detect the incident rapidly and recover the transportation infrastructure capacity as quickly as possible (Carson, 2010). Various tools and strategies are proposed to facilitate traffic incident management, including manually adjusting adjacent traffic signals to temporally increase capacity to accommodate the traffic patterns under the impact of traffic incidents. However, due to the characteristics of traffic incidents, such as random locations, times of day, and 
	Logi and Ritchie proposed a knowledge-based system for non-recurring traffic congestion supporting traffic management personnel to select integrated traffic control plans, including traffic diversion and signal timing adjustment, to decrease traffic flow metering from the incident locations and increase capacity for the congested approaches (Logi and Ritchie, 
	2001). This traffic congestion management tool relied on the knowledge collected from a set of predetermined incident locations by varying the inputs, such as flow saturation degree and traffic signal timing parameters, to increase the uncertainty of the environment to mimic the real-time scenario. The model provides a selection of control plans for the users as well as the reasoning logic for the target goals. However, the model did not include enough detail about how to choose the adjacent signalization i
	Wirtz et al. evaluated the impact of traffic signal adjustment from a preplanning perspective for a full road closure on I-94 (Wirtz et al., 2005). Dynamic traffic assignment-based simulation was used to compare the traffic delay in time before and after manually adjusting the traffic signal plans near the incident locations. The results show that the preplanning of the traffic incidents in terms of traffic signal control adjustment could reduce the traffic delay and recover the roadway capacity faster than
	Ban et al. developed a decision-making tool to determine if adaptive signal control is better than the existing actuated signal control system in real-world situations by using a regression model and support vector machines (Ban et al., 2016). However, this research failed to discuss the impact of traffic incidents in the comparison. 
	Mao et al. proposed genetic algorithms to optimize adaptive traffic signal control under severe incident conditions (Mao et al., 2019). This research first fine-tuned the model parameters in a recurrent traffic condition and then implemented the improved model in non-recurring situations. The results concluded that the proposed genetic algorithm reduces the traffic delay by over 40%. 
	2.4 Summary  
	Reinforcement learning is advantageous compared to conventional signal control methods. Data that is currently available to characterize the intersection or network state can become intensive and conventional methods cannot make use of this information as efficiently as reinforcement learning which relies on the computing capability of modern machines. For example, reinforcement learning could directly use camera images as the inputs for the learning model to extract useful information and output the model 
	Although many research efforts have implemented reinforcement learning models in normal traffic conditions to show its advantages over conventional signal optimization methods, the analysis of reinforcement learning-based signal control under traffic incidents has largely been ignored. This dissertation contributes to filling this gap by building a reinforcement learning model, particularly the Q-learning model in traffic signal control by considering traffic incidents in the network to improve network dela
	network traffic incidents. 2. The parameters of the DQN model used in the single intersection will be optimized. The derived model will be transferred into a network with 16 intersections (4x4) with little computing time to perform cooperative adaptive signal control to alleviate traffic impacts of traffic incidents. This would build the foundation for evaluating the deep Q-learning performance in the network settings in response to the random occurrence of traffic incidents in the network.  
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	3.1 Introduction 
	In this chapter, key concepts of reinforcement learning are illustrated as well as Q-learning and its variants for improvement. 
	3.2 Reinforcement Learning 
	Reinforcement learning is a process through which an AI agent  takes sequential actions by interacting with its environment by trial and error to solve a task, which is often modeled as a Markov Decision Process (MDP). An MDP is a mathematical framework for modeling decision making in a discrete and stochastic control process (Howard, 1960).  
	At each time step 𝑡, the agent observes a state s from the environment, where 𝑠∈𝑆 and 𝑆 represents all possible states in the environment. The agent takes an action a by following some predetermined rules where 𝑎∈𝐴(𝑠) and 𝐴(𝑠) represents all potential actions for the agent to perform at state s. The environment shifts to another state s^' with the impact of the performed action and sends a numerical signal, termed reward 𝑅(𝑠,𝑎,𝑠′ ), to the agent to inform whether the action is promising as expe
	At each time step 𝑡, the agent observes a state s from the environment, where 𝑠∈𝑆 and 𝑆 represents all possible states in the environment. The agent takes an action a by following some predetermined rules where 𝑎∈𝐴(𝑠) and 𝐴(𝑠) represents all potential actions for the agent to perform at state s. The environment shifts to another state s^' with the impact of the performed action and sends a numerical signal, termed reward 𝑅(𝑠,𝑎,𝑠′ ), to the agent to inform whether the action is promising as expe
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	Figure
	Figure 3.2-1. Closed Loop of Reinforcement Learning Process (Sutton and Barto, 2018) 
	 
	State 𝑆 is a member of the set of all observations of the environment represented  by the model. Take traffic signal control as an example, if the longest queue length from each approach is determined to be used to represent an isolated intersection, the possible states can be represented by an integer array with a size of 4 and each integer represents the longest queue length of each approach with only straight movement traffic demands.  
	The set of actions 𝐴 defines the choices of the agent to exert on the environment. In the case of traffic signal control, the agent is the traffic signal controller. The actions the agent can perform include extending the current phase green time or shifting to the next phase from the available phases. For some cases, the agent can skip phases if conditions are satisfied, which is predetermined by the modeler. 
	The Markov property states that the future is independent of the past (Markov, 1954). Therefore, the transition function 𝑃 models the transition probability of new state 𝑆′ based on the current state 𝑆 and chosen action 𝐴 as follows: 𝑃(𝑆′=𝑠′|𝑆=𝑠,𝐴=𝑎)=𝑝(𝑠′|𝑠,𝑎) 
	In the case of traffic signal control, assume the current state is s and the signal controller chooses to extend the current phase. If we knew the transition function, we could get a deterministic new state. However, the transition function of a dynamic environment, such as a a transportation network, is hard to obtain and estimation is required to solve this issue. 
	Reward 𝑅 is an immediate quantified signal that the agent receives from the environment as the result of taking an action, and it directly notifies the agent if the action is good or not. In the case of traffic signal control, if we choose to extend the current phase, but the current state has no traffic demand for it, this environment should send a negative reward to the agent that it is not a good choice.  
	To be more specific, the agent first observes its environment and senses the inputs, termed state. The agent takes an action from its action set based on the existing information and knowledge learned from its past experiences. The environment changes to the next state from the previous one based on the action performed by the agent. The new environment will send a signal, termed reward, to the agent telling the agent whether the taken action is good or not. If the reward is good, the agent will learn it an
	One of the challenges of reinforcement learning is when the MDP cannot be fully determined in terms of the transition function. Two common learning methods are used to overcome this issue. The first one isto build a model of the MDP and find the optimal policy. The second approach is to gain knowledge through experience (a tuple of state, action, reward, and new state) and estimate the optimal policy.  
	In the finite MDP, an episode denotes a process from the beginning state to the end state. In the case of traffic signal control, one round of simulation of a traffic demand with the signal control process can be called one episode. During each episode, the trajectory of the reinforcement learning process could be represented by a series of states, actions, and rewards. If the learning process is finite and the final time step is denoted by T, the whole learning trajectory could be expressed as: 𝑆1,𝐴1,𝑅1
	The goal of learning is to maximize the total rewards, termed as returns denoted by 𝐺𝑡 at time step 𝑡. 
	𝐺𝑡= ∑𝑅𝑖𝑇𝑖=𝑡 
	In the above equation, every reward from time 𝑡 is equally important since there is no weighting factor for each one. However, in reality, the rewards might not be the same. For example, which one will you choose, $1,000 now or $1,000 one year later? The answer is definitely obvious. You will choose to get the money as soon as possible because money tends to depreciate in the long run. The same concept was introduced to the. Discount factor, 𝛾 is used to quantify this effect and the return can be calculat
	The discount factor is a value between 0 and 1, inclusively. If it is set to 0, only the immediate reward will be considered. If it is set to 1, future rewards have the same value as the current one. Normally, the discount factor is set to be a value slightly less than 1 so we treat future rewards as less important than the immediate ones and it will eventually decay to 0 if the time steps are large enough. 
	The discounted returns can also be expressed as the following by considering that the MDP is executed one time step at a time: 𝐺𝑡=𝑅𝑡+𝛾𝐺𝑡+1 
	This equation reflects the relationship between two consecutive returns. Note that all the rewards, 𝑅𝑖, where 𝑖=𝑡,𝑡+1,…,𝑇, in this equation have not been observed so they are random variables. We use 𝑟𝑡 to denote the observed reward. The randomness of 𝑅𝑡 comes from two sources. First, the action can be randomly chosen if exploring the environment early in the training stage. The other one is due to the randomness of the new state from the environment.  
	3.3 Q-Learning 
	Since 𝑅𝑡 is a random variable with respect to the states and actions starting at time step 𝑡, the returns 𝐺𝑡 is also a random variable with respect to the states and actions. To calculate 𝐺𝑡, we need a way to estimate future rewards. Q-learning is the most common algorithm to calculate returns based on the Temporal Difference (TD) learning concept. TD learning is a combination of Monte Carlo (MC) estimation and Dynamic Programming (DP). MC estimation allows the agent to learn from its experience with
	The Q-value, known as the action-function value, 𝑄𝜋(𝑠𝑡,𝑎𝑡), is used to represent the expectation of returns 𝐺𝑡 with respect to the state and action at time 𝑡 as: 𝑄𝜋(𝑠𝑡,𝑎𝑡)=𝐸(𝐺𝑡|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡) 
	Since we have 𝐺𝑡= 𝑅𝑡+𝛾𝐺𝑡+1, we can express the Q-value as follows: 
	 𝑄𝜋(𝑠𝑡,𝑎𝑡)=𝐸(𝑅𝑡+𝛾𝐺𝑡+1|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡)                     =𝐸(𝑅𝑡|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡)+𝛾(𝐸(𝐺𝑡+1|𝑆𝑡=𝑠𝑡,𝐴𝑡=𝑎𝑡))                     =𝐸(𝑅𝑡+𝛾𝑄𝜋(𝑆𝑡+1,𝐴𝑡+1)) 
	There must exist at least one policy that leads to the maximum action-value function and we use 𝑄∗to indicate this optimal action-value function. Whatever policy is used, we cannot improve the action-value function by taking action 𝑎𝑡 at the given state 𝑠𝑡. Normally, we can remove the 𝜋 from 𝑄 to simplify the expression. 𝑄∗(𝑠𝑡,𝑎𝑡)=max𝜋𝑄𝜋(𝑠𝑡,𝑎𝑡) 
	The best action leads to the maximum action-value function which can be expressed by: 𝑎∗=argmax𝑎𝑄∗(𝑠𝑡,𝑎𝑡) 
	Since we do not know the expected value of rewards 𝑅𝑡 and returns from the next time step, we use the observed 𝑟𝑡 and 𝑄𝜋(𝑠𝑡+1,𝑎𝑡+1) to estimate the Q-value (Watkins, 1989). Combined with the DP concept to update the action-value function based on parts of the observations and parts of the estimations, we have the Q-learning expression (Watkins, 1989), defined by: 𝑄∗(𝑠𝑡,𝑎𝑡)=(1−𝛼)𝑄∗(𝑠𝑡,𝑎𝑡)+𝛼[𝑟𝑡+𝛾max𝑎𝑄∗(𝑆𝑡+1,𝑎)] 
	Where 𝛼 is called learning rate, a hyper-parameter that is not learned from the learning process but determined by the modelers in advance. The learning rate determines how much the old Q-value should be changed based on the estimated Q-value. Q-learning trains the optimal action-value function 𝑄∗(𝑠,𝑎). In the above equation, the second part of the equation is called the TD target, which is a combination of the observed reward by executing one time step and the estimated optimal Q-value from the next ti
	TD error represents the difference between the target value and the existing value, expressed by: 𝛿𝑡=𝑄∗(𝑠𝑡,𝑎𝑡)−𝑦𝑡 
	Therefore, the Q-learning update equation can be expressed by: 𝑄∗(𝑠𝑡,𝑎𝑡)=𝑄∗(𝑠𝑡,𝑎𝑡)−𝛼𝛿𝑡 
	Using the TD learning method reduces the difference of the TD error through experience. Once the error cannot be reduced anymore (smaller than a threshold), the learning is considered 
	to be converged and the learning process can be terminated. The Q-learning method will converge as long as each state-action pair can be visited enough times (Watkins, 1992). 
	To enable the agent to explore efficiently early in the learning process, 𝜀-greedy policies are used by giving all nongreedy actions the minimal probability, 𝜀|𝐴(𝑠)|, where 𝜀 is a value between 0 and 1 and the denominator is the size of the possible actions. For greedy actions, the probability is set to 1−𝜀− 𝜀|𝐴(𝑠)| . As learning proceeds when the agent has more knowledge, the action choice will be cleverer and more efficient by lowering the probability of choosing random actions. This is normally 
	3.3.1 Tabular Q-learning 
	For a simple environment with a small number of state-action pairs, one can use the tabular method to solve the Q-learning problem. This method uses a table, termed Q-table, to save the Q-value of each state-action pair during the learning process. Once the algorithm converges, the final Q-table can be used to guide the agent to choose an action at any given state to achieve the maximum expected returns. 
	An algorithm for solving the Q-learning problem by the tabular method is listed below: 
	 
	Figure
	Figure 3.3-1.  Bus line simulation demonstration Algorithm: Q-learning 
	 
	3.3.2 Deep Neural Network and Deep Q-learning 
	For a more complex environment, when the number of state-action pairs is too large to be stored with a Q-table or when it is impossible to visit each state-action pair, the optimal action-value function (𝑄∗(𝑠,𝑎)) can be approximated. Hence DQN was introduced to improve the capability of Q-learning (Mnih et al., 2015). 𝑄∗(𝑠,𝑎)≈𝑄(𝑠,𝑎;𝜃) 
	Here 𝜃 represents the learning parameters in the DQN. The essence of DQN is the deep neural network (DNN). DNN is comprised of at least three layers of artificial neural network, as shown in 
	Here 𝜃 represents the learning parameters in the DQN. The essence of DQN is the deep neural network (DNN). DNN is comprised of at least three layers of artificial neural network, as shown in 
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	. Activations of one layer determines activations of the next layer and the inputs proceed. Each layer detects a pattern from the previous layer. With a large number of hidden layers, the model can detect more sub patterns, compared to the model with a small number of hidden layers. If the number of hidden layers is less than what is required to extract important features from the inputs, the model might under fit the data. Otherwise, overfitting could occur. The number of hidden layers tends to correspond 
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	Figure 3.3-2.  Deep neural network with three hidden layers (
	Figure 3.3-2.  Deep neural network with three hidden layers (
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	https://www.ibm.com/cloud/learn/neural-networks

	) 

	 Each neural network includes a certain number of nodes and each node is called an artificial neuron. Each neuron takes the outputs from the previous layer and outputs a number between 0 and 1 by normalization to reduce the computing time. For example, the first layer of the DQN is the input layer and the value of each node is only dependent on the inputs. Each node in the hidden layers is initialized with an arbitrary weight, as a connection between the nodes in adjacent layers, but cannot be the same for 
	in the DNN. The concept of “learning” is a process of updating weights associated with each node in the hidden layers to minimize the cost function, also known as the loss function, so that the learning model can accurately predict  and maximize returns  from the inputs. The number of nodes in each hidden layer is a hyper-parameter that must be fine-tuned as is the number of hidden layers in the DNN. 
	As mentioned before, the parameters in the DNN are randomly selected by initialization. How does the model learn from the inputs? No matter what models of machine learning one uses, one must have a predicted value and a target value. In deep Q-learning, the target value is based on observation of one time-step reward and the estimated optimal Q-value from the next state. The predicted value is the current Q-value updated by the Q-learning update equation. The difference between the predicted value and targe
	The process of solving Q-learning with the DQN approximation has the following steps: 
	 
	Figure
	Figure 3.3-3.  Algorithm: Q-learning with DQN 
	 
	3.4 Deep Q-learning Variations 
	Although deep Q-learning has achieved promising results for many applications, it may be unable to converge when implementing a neural network (McClelland et al., 1995). Two main reasons can lead to this issue. 
	First, we use a transition, (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1), in the deep Q-learning mentioned earlier to train the model. Successive transitions can be correlated with each other and hence make the model update highly correlated. Second, every time one transition is used to update the model, it will be discarded and will never be used again. Experiments have shown that using consecutive transitions without any improvement to train the DQN can  result in inefficient training regardless of training time. Therefore, e
	3.4.1 Experience Replay 
	The purpose of implementing experience replay is to reduce the impact of correlated transitions for the training process. To implement experience replay, a data structure which is a list of tuples (past transitions), termed a replay buffer, is used. The size of the replay buffer, 𝑁, is a hyper-parameter that must be tuned and cannot be trained by the learning model. 
	The replay buffer stores 𝑁 past transitions, a tuple of (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1) called experience 𝑒𝑡. The model will not begin the training until the replay buffer is filled with past experiences with the size 𝑁. A minibatch (certain number of experiences), termed batch size, will be randomly and uniformly selected from the replay buffer to train the model. The chosen experiences are equally important in terms of improving the model. To maintain the size of the replay buffer, the oldest experiences are 
	3.4.2 Target network 
	Another known limitation of the DQN is overestimating the Q-value (Van Hasselt et al., 2016). Recall the TD target in DQN is defined by: 𝑦𝑡=𝑟𝑡+𝛾max𝑎𝑄(𝑠𝑡+1,𝑎;𝜃) 
	The TD target is partly based on the observation 𝑟𝑡 and partly on the estimate of DQN for the state at the next time step. Since we always choose an action to maximize the Q-value, the model will overestimate the TD target and hence overestimate the Q-value overall. To solve this issue, the concept of the target network was proposed (Mnih et al., 2015). Instead of using the DQN parametrized by 𝜃, to calculate the TD target, the target network uses another DQN with parameter 𝜃−, which will be fixed in a 
	Gradient descent is the common method to reduce the loss function by following the direction of the derivative of the loss function with respect to 𝜃𝑡: 𝜕𝐿𝑡(𝜃𝑡)𝜕𝜃𝑡=−𝐸[(𝑟𝑡+𝛾max𝑎𝑄(𝑠𝑡+1,𝑎;𝜃𝑡−))𝜕𝑄(𝑠𝑡,𝑎𝑡;𝜃𝑡)𝜕𝜃𝑡] 
	With the combination of experience replay as mentioned earlier, random samples from the replay buffer will be extracted to update the DQN parameter, termed stochastic gradient descent to break the correlation of successive experiences. 
	3.5 Summary 
	The DQN with experience replay and target network was introduced by Minh (2015) and will be adopted to train the traffic signal controller for the single intersection scenario in this research.  
	The pseudocode of the algorithm used in this dissertation is listed below: 
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	Figure 3.5-1.  Algorithm: Deep Q-learning with Experience Replay and Target Network 
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	4.1 Overview 
	Simulation is a primary method by which municipal traffic engineers establish confidence in innovative traffic signal timing concepts. This confidence is ordinarily established by characterizing the field network, collecting traffic demand data and testing potential signal retiming policies to analyze network performance (e.g., average vehicle delay). In recent years, as the development of reinforcement learning methods has evolved, a goal-oriented machine learning process can be applied decreasing analysis
	The core concept of reinforcement learning algorithms is to explore the relationship between the agent’s actions and its evolving environment by trial-and-error methods. Feedback from the environment measured by so-called rewards can help the agent adjust its behavior so as to achieve more rewards in the future.  
	The next generation traffic signal control system is far from the field application since many aspects, including traffic incidents, have not been tested thoroughly. One major reason is that collecting field network data associated with traffic incidents and validating the proposed models are expensive and time-consuming. For example, collecting historical traffic incident characterizations and emergency vehicle response data are rarely feasible for most researchers, who might want to focus more on the deve
	The agent can learn from interaction with the environment regarding impacts of traffic incidents in the network. However, a large amount of experience is required to enable  the agent to optimally respond to all possible incident situations so implementation of  an AI traffic signal without sufficient experience would be disastrous. An implemented AI traffic signal should perform at least better than existing signal timing plans with/without traffic incidents.  
	A more inexpensive and practically feasible traffic simulation tool with traffic incident/response and AI signal control module would be helpful in promoting a smarter more robust traffic signal control system. Therefore, we provide a Python extension based on SUMO to allow micro-simulation of an AI signal control system in a network experiencing incidents randomized in both time and space.  
	We begin by highlighting some existing efforts in developing the next generation traffic signal control systems and available simulation software with traffic incident/response capabilities. This is followed by the extraordinary features of SUMO and the framework we used to extend SUMO with a traffic incident/response module coded in Python. Experiments are presented to show the use of the extended module. 
	4.2 Literature Review 
	Traffic signal retiming plays a significant role in improving the network performance when traffic incidents occur. Due to the complicated inputs and short period of time for making decisions, traffic simulations have been commonly adopted to test potential traffic signal 
	retiming policies before field implementation. Liu and Hall proposed a Windows operating system-based computer simulation software for simulating highway traffic incidents as well as emergency vehicle dispatching (Liu and Hall, 2000). Traffic delay is the only factor considered in the model and queue spill back effect is not simulated. It could help researchers and practitioners to broadly understand the impact of traffic incidents and determine the emergency dispatch strategies as needed. However, there ar
	Kaan and Bartin developed a complete traffic incident simulation tool in Siman language to generate incidents in the network and to send emergency vehicles to respond accordingly (Kaan and Bartin, 2003). Real network and real-world data were collected to test their proposed simulation tool. This work allows users to implement different TIM strategies to reduce the impact of traffic incidents in the network. However, the programming language Siman is rarely used in the data scientist and machine learning mod
	Ozbay et al. proposed Rutgers Incident Management System (RIMS) to simulate traffic incidents and to test various incident response strategies based on the cell transmission model developed by Daganzo (Ozbay et al., 2009). The results indicate that computer simulation methods could significantly reduce the traffic delay triggered by a traffic incident in the network. However, this tool lacks traffic signal timing, limiting the usage of it.  
	Huang and Pan proposed to use a GIS engine to facilitate traffic incident and incident response optimization management. The idea was tested with real cases and commercial traffic simulation software (Huang and Pan, 2007).  
	Wirtz et al. proposed a simulation-based method to test traffic incident management strategies in Visual Interactive System for Transport Algorithms (VISTA), a dynamic traffic assignment (DTA) embedded tool (Wirtz et al., 2005). The DTA offers the opportunity for modelers to accurately estimate the impact of the traffic incidents by considering the dynamic change of road capacity and link travel time, where the static traffic assignment models fail to perform. Network and traffic demand were extracted from 
	Reinforcement learning methods have been adopted in the field of traffic signal retiming. The main advantage of the reinforcement learning methods is to allow use of deep neural networks to perform approximation of inputs from the environment and estimate cumulative long-term expected rewards with a model-free method. To achieve the accuracy of high-level function approximation, large amounts of data need to be prepared.  
	Common limitations of existing traffic incident simulation tools are: 
	• The tools have not been maintained and published so that other users find it hard to replicate the experiments or design new experiments to test traffic signal control strategies. A free and open-source simulation software is needed. 
	• The tools have not been maintained and published so that other users find it hard to replicate the experiments or design new experiments to test traffic signal control strategies. A free and open-source simulation software is needed. 
	• The tools have not been maintained and published so that other users find it hard to replicate the experiments or design new experiments to test traffic signal control strategies. A free and open-source simulation software is needed. 

	• The existing tools are not able to generate a test network and associated traffic demand so as to minimize the costs of preparing the base scenario. Most existing experiments use a single or multiple real data points to simulate the traffic incident environment. This scale of inputs is not enough to train the machine learning models.   
	• The existing tools are not able to generate a test network and associated traffic demand so as to minimize the costs of preparing the base scenario. Most existing experiments use a single or multiple real data points to simulate the traffic incident environment. This scale of inputs is not enough to train the machine learning models.   

	• The functions in the existing tools are not comprehensive enough to test proposed strategies from different angles, including vehicle rerouting and traffic signal retiming.  
	• The functions in the existing tools are not comprehensive enough to test proposed strategies from different angles, including vehicle rerouting and traffic signal retiming.  

	• The existing tools are not available for multi-cross platforms, preventing the use of high-performance computing advantages these days.  
	• The existing tools are not available for multi-cross platforms, preventing the use of high-performance computing advantages these days.  

	• The simulation environment is closed, meaning it is hard for the users to customize and extend.  
	• The simulation environment is closed, meaning it is hard for the users to customize and extend.  

	• Measurement of Effectivenesses (MOEs) are limited and do not catch up with the network performance measurement nowadays when vehicle emission and fuel consumptions are required to be considered.  
	• Measurement of Effectivenesses (MOEs) are limited and do not catch up with the network performance measurement nowadays when vehicle emission and fuel consumptions are required to be considered.  

	• Manually generating test networks, traffic demand, and incident occurrence is not efficient for training machine learning algorithms for traffic signal retiming. 
	• Manually generating test networks, traffic demand, and incident occurrence is not efficient for training machine learning algorithms for traffic signal retiming. 


	There is a need for a simulation testbed that incorporates the traffic signal retiming and traffic incidents/response system to develop a more robust AI traffic signal control system. The purpose of this work is to provide a highly automated process to generate random traffic incidents in the given network as well as the corresponding emergency service vehicles as an extension based on the existing popular microscopic traffic simulation software SUMO. Key components in the extension include random traffic i
	4.3 Simulation Platform 
	SUMO simulation requires at least two files, including a network file and a route file. The network file defines the road network, including intersections, edges, and connection rules. The traffic signals can be also included in the network file. There are several common types of traffic signals provided in SUMO, including pretimed, actuated, adaptive, and other more 
	advanced (self-organized traffic signals) control frameworks. Detectors are also provided with the user's definition, including loop, area detector, etc. Users can also customize the traffic control algorithms as needed, including the reinforcement learning traffic signal control methods. 
	4.3.1 Network 
	Another benefit of using SUMO is that it provides a network generation library (NETGENERATE) so that users can easily build a grid-like network. This library allows users to determine the number of intersections in horizontal and vertical directions in the network. Users can also choose the number of lanes and length of each approach for each intersection.  
	Pretimed traffic signals can also be added to the target intersections in the network. The tool provides a way to set up the cycle length, left turn protection phases, green split, yellow time, and all red time durations to mimic the practical applications as needed. 
	4.3.2 Traffic Demand 
	SUMO provides another important and useful Python script to prepare traffic demand randomly based on the developed network if users cannot get access to any trip information of the network. It is convenient to the users who focus on evaluating a more generalized traffic signal control algorithm so they do not have to spend time collecting field data. The tool allows users to set the ratio of internal and external traffic demand as needed. In this study, we assume that all traffic demand is external traffic 
	Another commonly used way in SUMO to generate the traffic demand is to dynamically add vehicles to the system. The problem with this method is that the generated traffic will calculate the shortest path in the network dynamically so it might be able to detour around the incident location and hence decrease the traffic impact.  
	In order to isolate the impact of traffic signal retiming provided by the AI traffic signal agent, we need to lock the traffic routes so that when there is a traffic incident in the system, the traffic would not shift routes. This is not the case in reality where travelers would shift routes to avoid being stuck in a long queue in the network. However, we assume that no travelers would change routes for two reasons. First, the benefits of optimizing the signal plan based on the AI traffic signal agent need 
	The same thing should not happen to the traffic demand generated later after the incident time. Therefore, this paper decided to use the first method mentioned above and edit the original traffic demand file (XML format) to add traffic incidents, including incident locations, incident durations, and emergency vehicle response. 
	4.3.3 Incident Generation 
	SUMO provides three methods to simulate traffic incidents in the network: 1. Stop a car at a designated location for a specific period; 2. Reduce the road capacity of associated edges; 3. Reduce the design speed of the associated road edges. The easiest and more realistic manner is the first one since it will require the route file to be edited with one line of code to reflect the stop of an incident vehicle. 
	SUMO provides three methods to simulate traffic incidents in the network: 1. Stop a car at a designated location for a specific period; 2. Reduce the road capacity of associated edges; 3. Reduce the design speed of the associated road edges. The easiest and more realistic manner is the first one since it will require the route file to be edited with one line of code to reflect the stop of an incident vehicle. 
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	 shows the added traffic incident information in the route file. In this example, the vehicle with ID 2 will stop at Lane “C2C1_1” 20 meters from the end of this lane for 1500 seconds. 

	  
	Figure
	Figure 4.3-1. Settings of Stopping Vehicle in Route File 
	4.3.4 Emergency Service Vehicles Simulation in Sumo 
	In addition to the incident vehicle generation, we also provide a way to generate emergency service vehicles in the simulation once the traffic incident is detected.  
	During normal traffic movement, no vehicle will stop at a location for a long period of time, a user-defined time threshold (e.g., 5 minutes). Once the system has detected that a vehicle is stuck in the network for more than a specific period of time, the emergency service vehicles will be generated and dispatched. Users can choose the number of emergency service vehicles to reflect the reality process, such as multiple police cars and EMS vehicles.  
	We can generate multiple individual vehicles to mimic the police and EMS vehicles, but the problem of this is some of the vehicles might not be able to reach the incident location due to associated traffic congestion. To overcome this issue, we decided to edit the emergency vehicle length to mimic multiple emergency service vehicles being needed.  
	The default length of per emergency service vehicle is 7.5 meters, including 5 meters for the vehicle length and 2.5 meters for the clear space. For example, if 3 police cars and 1 EMS vehicle are required to deal with a traffic incident, that is a total of 4 emergency service vehicles, a vehicle with length of 30 meters,  will be generated and dispatched in the simulation and hence it will block 30 meters of the incident lane to reflect the combination impact of multiple emergency services vehicles in prac
	In SUMO, there are several important concepts of network components. Edge defines the approach of the intersection. Edge includes a certain number of lanes. The lanes are named based on the edgeID and lane index.  
	The route of the emergency service vehicle is defined before dispatching it into the network. To generalize the implementation of emergency vehicle response, we randomly select an origin for its route from the fringe of the network. The destination of the route is the incident 
	edge. During the incident response service, the emergency vehicle will occupy the lane next to the incident vehicle. For example, if the incident vehicle stops at the middle lane of an edge and there are 3 lanes for this edge, the emergency service vehicle will randomly stop in either the first (straight and right turn lane) or the third lane (left turn lane in our experiment) of the same edge.  
	The emergency vehicle will arrive at the incident location after the incident vehicle has been detected and the travel time from its origin to the incident location. And then the emergency service vehicle will stop for the same duration as the incident vehicle stops. Once the emergency service vehicle completes its service it will finish its route and reach the intersection of the destination edge. 
	In Traci, the function to generate a route based on the origin and destination edges is traci.simulation.findRoute(origin_edge, destination_edge). Once the two parameters are given, the function will find a feasible and probably the shortest route in the network. The route information could be called to show the edges used in this route by calling the route.edges property.  
	To dispatch the emergency service vehicle in the system, the function traci.route.add(routeID, route_edges) needs to be called to add the edges of the emergency service vehicle route into the route file. The emergency service vehicle then can be added to the route file by calling traci.vehicle.setStop(vehicle_id, route_edges, stop_lane_index, stop_duration). Users can customize the traffic signal to allow emergency service vehicle priority so that it can arrive at the incident location as quickly as possibl
	For a two-lane edge, the whole edge will be blocked by both the incident car and emergency service vehicle, while for a three or more-lane edge, two lanes will be blocked and its capacity will be reduced significantly. We examined the impact of only considering the incident vehicle without the emergency service vehicle in the system and the delay impact is significantly different, showing that having the emergency service vehicle in the system should be more realistic. The pseudo code for the simulation is 
	For a two-lane edge, the whole edge will be blocked by both the incident car and emergency service vehicle, while for a three or more-lane edge, two lanes will be blocked and its capacity will be reduced significantly. We examined the impact of only considering the incident vehicle without the emergency service vehicle in the system and the delay impact is significantly different, showing that having the emergency service vehicle in the system should be more realistic. The pseudo code for the simulation is 
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	Figure 4.3-2. Pseudocode for the Simulation Framework 
	4.4 Simulation Procedure 
	Once the network and traffic demand are prepared, the customized incident Python script will read the route XML and randomly select a vehicle to generate a traffic incident. Then the simulation starts and once the incident vehicle is detected in the network stopping for more than 5 minutes (a user defined threshold), emergency service vehicles will be generated by calling DISPATCH_EMERGENCY_VEHICLE() function. The default color of the emergency vehicle is set to be blue and the length of it is determined by
	The developed incident generation and emergency service vehicle response Python script is published in the following 
	The developed incident generation and emergency service vehicle response Python script is published in the following 
	GitHub repository
	GitHub repository

	.  The Networks directory includes a 4x4 grid network generated by calling the NETGENERATE command aforementioned, as shown in 
	Figure 4.4-1
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	. The main functions of incident generating and emergency service vehicle response are in incidentRoute.py located in the root directory of this GitHub repository.  
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	Figure 4.4-1. 4x4 Grid Network with Traffic Incident 
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	Figure 4.4-2. An Example of the Incident Vehicle (Red) and Emergency Service Vehicles 
	In 
	In 
	Figure 4.4-1
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	, the 4x4 grid network is shown as well as the incident vehicle and emergency service vehicle. 
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	 shows a larger view of the incident vehicle (RED) and emergency service vehicle (BLUE).  

	The current Python script is for single traffic incident preparation. Users could extend it to include multiple incidents as needed. 
	4.5 Implementation 
	A 4x4 grid network can be created by running the NETGENERATE module provided by SUMO to generate a grid-like network with user settings. All the parameters as well as their meaning can be found in Appendix 1. 
	Traffic demand associated with the 4x4 grid network can be prepared by running the trip generating Python script in SUMO. Some of the key parameters that users can define include the ratio of internal and external trips, hourly traffic flow, and turning ratios. The commands used in this paper can be found in Appendix 2 as well as the explanation of the parameters.  
	Traffic demands are all external traffic, meaning the origins and destinations of all trips are at the network fringe.  
	Intersections are all controlled by pretimed traffic signals with 4 phases, including east-west straight movement phase, east-west left turn phase, north-south straight movement phase, and north-south left turn movement phase. Right turn movement is allowed and included in the straight movement phases. Cycle time for every intersection is the same, 90 seconds. The cycle is split 50%-50% between the east-west and north-south directions with the straight/right movement receiving 27 seconds and the left turn p
	To add random incidents in the created network, the python script must be called. Several inputs need to be defined before calling the extension, Including the network XML file provided by the NETEDIT function, the traffic demand XML file produced by calling the randomTrip.py tool provided by SUMO, and the corresponding SUMO configuration file.  
	The traffic incident will be generated before the simulation starts by randomly selecting a vehicle from the first one third of the simulation period. The vehicle must have a route crossing the center of the network so that the stopped lane is not located in the fringe of the network to prevent vehicles from entering the network. The traffic incident will last for a random period of time from 15 minutes to 30 minutes with a 5-minute increment. Once the vehicle reaches the incident location, it will fully st
	The traffic simulation system will record all vehicles' stop duration in the network. Once it detects one vehicle stopped for more than 5 minutes (a tunable parameter) in the same location, it assumes a traffic incident exists. 
	A number of emergency medical service and police cars will be generated as a single long length vehicle to abstract their impact. The origin of this emergency vehicle will be a random location along the network fringe and its destination is the incident location. The emergency vehicle will be stopped for the same amount of time as the incident vehicle . For a two-lane edge, the incident vehicle and emergency vehicle will fully block the road. 
	The extension could be customized easily if multiple incidents are required for any scenario. 
	4.6 Summary 
	This work provides a convenient Python script for SUMO extension. Rather than only considering the traffic incident impact in the network, this research also provides a way to simulate the emergency service vehicle impact in the network. As shown in the experiment results, the combination impact of traffic incidents and corresponding emergency service vehicle response could cause significantly more delays than only considering the traffic incident itself in the network. This tool will help researchers to pr
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	Single Intersection Deep Reinforcement Learning Traffic 
	Signal Control
	 

	5.1 Overview 
	This chapter employs the proposed deep reinforcement learning signal control algorithm to a single intersection simulation scenario, highlighting the potential advantages of using deep Q-learning for the traffic signal controller problem. Additionally, to assess the performance of the proposed algorithm, we compare it against three traditional non-learning traffic signal control algorithms, including Max-pressure, Webster's, and Uniform. To evaluate the effectiveness of the traffic signal controllers, we ut
	The subsequent sections of this chapter are structured as follows. The second section provides an introduction to the deep Q-learning algorithm, which is utilized along with three traditional non-learning traffic signal controllers. The simulation platform settings and code preparation are then detailed. In the Results section, a comprehensive analysis is conducted to compare the performance of the learning and non-learning traffic signal control algorithms. The final section provides a discussion and concl
	5.2 Deep Q-Learning Model 
	As Chapter 3 explains, Q-learning is a type of reinforcement learning that does not rely on a pre-existing model and allows for learning the value of actions in a given state. In certain situations, a Q-table can be used to explore all possible state and action combinations, allowing the agent to develop a coherent policy that maximizes cumulative rewards once the model has reached convergence. However, for traffic signal control problems, where the number of states and action pairs is exceptionally large, 
	To provide an example, let's consider a single intersection where the number of states and action pairs is dependent on factors such as the number of vehicles in each lane, the number of lanes per approach, the capacity of each lane, and the signal phasing patterns. When dealing with multiple intersections, it is preferable to have an optimized system solution. Instead of obtaining actual rewards for each state-action pair, we can use a deep neural network (DNN) to estimate the performance of an action in a
	The key components of reinforcement learning are: 
	• Agent: The entity that interacts with the environment and learns to take actions based on the observed states to maximize the reward. 
	• Agent: The entity that interacts with the environment and learns to take actions based on the observed states to maximize the reward. 
	• Agent: The entity that interacts with the environment and learns to take actions based on the observed states to maximize the reward. 

	• Environment: The external world in which the agent interacts and receives feedback in the form of rewards. 
	• Environment: The external world in which the agent interacts and receives feedback in the form of rewards. 

	• State: The current configuration of the environment that the agent observes. 
	• State: The current configuration of the environment that the agent observes. 


	• Action: The decision made by the agent to transition from one state to another. 
	• Action: The decision made by the agent to transition from one state to another. 
	• Action: The decision made by the agent to transition from one state to another. 

	• Reward: The feedback signal that the agent receives from the environment after taking an action. The reward represents the immediate benefit or cost of the action taken by the agent. 
	• Reward: The feedback signal that the agent receives from the environment after taking an action. The reward represents the immediate benefit or cost of the action taken by the agent. 

	• Policy: The strategy that the agent uses to determine its actions based on the current state of the environment. 
	• Policy: The strategy that the agent uses to determine its actions based on the current state of the environment. 


	5.2.1 Agent 
	In machine learning, an agent is an entity that interacts with an environment to achieve a specific goal. The agent can receive observations or data from the environment, take actions based on that information, and receive feedback or rewards that indicate how well it is achieving its goal. The agent's objective is typically to learn a policy, which is a mapping from observations to actions, that maximizes its long-term cumulative reward in the environment. Agents can be implemented using a variety of techn
	The traffic signal controller is represented as the agent in DQN, which aims to achieve the maximum cumulative reward by interacting with the intersection and traffic demand through its learned policy. 
	5.2.2 Environment 
	The environment comprises everything except the agent, such as the geometry of the intersection, vehicle arrival rate, queue lengths, delay, and other factors that are beyond the agent's control. In our case, the intersection and its characteristics serve as the environment that the agent interacts with during the learning process. 
	5.2.3 State 
	The inputs in DQN are represented by the state, denoted as 𝑠𝑡, which belongs to the state space 𝑆 and 𝑡∈𝑇, where 𝑇 represent the time period for the learning process. 𝑇 is fixed in our experiment for the single, isolated intersection, meaning our learning process is a finite Markov decision process.  
	A suitable state must capture the essential features of the environment. In DQN, the state should include essential information from the intersection that the traffic signal controller can learn to improve its policy. Common measures used for state representation in traffic signal control include queue length, queue density, delay, vehicle waiting time, and their variations and combinations. Some more advanced states can be represented by the image of the intersection with vehicle positions which allows the
	By considering the complexity and ease of implementation of algorithms in practice, we choose normalized density of each lane (both incoming and outgoing), normalized queue length 
	of each lane (for both incoming and outgoing), and the most recent green phase as the state. The reason for normalizing the density and queue is to constrain the value to the range between 0 to 1. The normalized values for the inputs of machine learning models will generally decrease the training time to get the model converged (Goodfellow et. al, 2018). 
	Normalized density, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙∈𝐿, is defined by the ratio between total vehicles and lane capacity, where 𝑙 denotes the lane and 𝐿 represents a set of all incoming and outgoting lanes associated with the intersection. Normalized queue, 𝑞𝑢𝑒𝑢𝑒𝑙∈𝐿, is calculated as the ratio between the number of stopped vehicles and lane capacity. One-hot encoding of the most recent green phase is applied, plus the all red phases. 
	To summarize, the state in our single intersection case can be defined as below: 
	𝑠𝑡=[𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙1,…,𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑛,𝑞𝑢𝑒𝑢𝑒𝑙1,…,𝑞𝑢𝑒𝑢𝑒𝑙𝑛,𝑝ℎ𝑎𝑠𝑒1,…,𝑝ℎ𝑎𝑠𝑒𝑚] 
	Where 𝑛 denotes the number of incoming and outgoing lanes and 𝑚 represents the total number of green phases and one all red phase, subject to 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙∈[0,1], 𝑞𝑢𝑒𝑢𝑒𝑙∈[0,1], 𝑝ℎ𝑎𝑠𝑒𝑖=[0,1], and ∑𝑝ℎ𝑎𝑠𝑒𝑖=1𝑚. 
	5.2.4 Action 
	Action is defined as the choices that the agent can make and hence it is the phases that can be selected in our single intersection scenario. Action is represented by 𝑎𝑡∈𝐴, where 𝑎𝑡 denotes the action being chosen at time 𝑡 and action space 𝐴 is a set of all selectable phases (green phases and the all red phase). We have four green phases in our single intersection scenario, including East-West straight movement green phase with unprotected left-turn green (𝑝ℎ𝑎𝑠𝑒𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡−𝐸𝑊), North-South
	Since we randomly generate demand for the experiment including random ODs, we include two protected left-turn phases into the action space. For regular cyclic traffic signal controllers, the pattern will be fixed so left-turn green phases will be applied, while for the DQN and Max-pressure controllers, left-turn phases might be less used due to the traffic pattern.  
	In the DQN mode, each chosen phase will be up for at least 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If the next chosen phase is the same, it extends the current phase by adding another 𝑡𝑔𝑟𝑒𝑒𝑛 seconds. If a different phase is selected, the corresponding amber phase will be chosen and hence all red time thereafter, where 𝑡𝑦𝑒𝑙𝑙𝑜𝑤=3 seconds and 𝑡𝑟𝑒𝑑=2 seconds are fixed. 
	5.2.5 Reward 
	Reward at time 𝑡, 𝑟𝑡, serves as a numeric signal to train the DQN so the agent can quantify its action given a state and improve its performance by choosing the right action for maximizing long-term value measured by the reward. 
	As summarized in Chapter 2, commonly used reward representations include total delay and its variation, total stops, total queue length and its variation, and some combinations of those measurements. A number of research efforts have chosen total delay or its variation as the reward based on the assumption that ultimately, the system level performance will be measured by the total delay, so using the same measurements as the reward will directly guide the agent to improve its performance.  
	However, total delay requires knowing each driver’s desired speed and their actual speed through the network so that the difference could represent total delay.  Taking into account this obstacle when implementing the DQN algorithm, we use a queue related reward in our model. There are multiple forms of using queue length as the reward representation, and we use the quadratic form of queue difference between each incoming lane and outgoing lane, as shown below: 𝑟𝑡=∑𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡−1,𝑖𝑛𝑐𝑜𝑚𝑖
	𝑇ℎ𝑒 𝑡𝑒𝑟𝑚 𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑡,𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑖 denotes the number of vehicles stopping in 𝑖𝑡ℎ incoming lane. The quadratic form is used to penalize the long queues to avoid having unfair phase selection for those vehicles from the minor demand approaches. We also use the previous sum of squared queue length minus the current one so if an action reduces the value, the reward is positive and vice versa.  
	The goal of the agent is to maximize the cumulative rewards, defined by the following formula: 𝑅=𝑚𝑎𝑥∑𝑟𝑖𝑇𝑡=0 
	5.2.6 Policy 
	A policy is a function that maps the current state of an agent to an action to be taken by that agent. The policy defines the agent's behavior and determines what actions the agent should take in response to the environment. 
	There are two main types of policies in reinforcement learning: deterministic policies and stochastic policies. A deterministic policy maps each state to a single action. For example, a deterministic policy might always output "move forward" when the agent is in a certain state. A stochastic policy, on the other hand, maps each state to a probability distribution over actions. For example, a stochastic policy might output a probability of 0.7 for "move forward" and a probability of 0.3 for "turn left" when 
	The goal of reinforcement learning is to learn an optimal policy that maximizes the agent's long-term reward. This is typically done by using a trial-and-error approach, where the agent explores the environment and updates its policy based on the observed rewards. In our 
	case, the policy represents the weights, 𝜃, of the DNN which will help to choose an action based on a given state to maximize the cumulative rewards. Once the learning process is done, we can use the value saved in 𝜃 to approximately calculate the best actions we should choose given a state. For every step, if we follow this guidance, we will maximize cumulative rewards and hence find the best policy to choose a phase given a state. 
	5.2.7 DNN Structure 
	A deep neural network (DNN) is a type of artificial neural network (ANN) that is designed to model complex relationships between inputs and outputs by using multiple layers of processing nodes, or neurons, to learn hierarchical representations of the data. DNNs are composed of layers of interconnected nodes, with each node in a layer receiving input from the previous layer and outputting to the next layer. The nodes use nonlinear activation functions to transform their inputs and create a nonlinear relation
	DNNs consist of multiple layers of interconnected neurons that perform increasingly complex transformations on the input data. Common layers in DNNs include: 
	• Input Layer: The input layer receives input data and passes it to the next layer in the network. It typically does not perform any computation on the input. In our case, this is defined by the inputs collected from the intersection and can be used by the controller to learn. 
	• Input Layer: The input layer receives input data and passes it to the next layer in the network. It typically does not perform any computation on the input. In our case, this is defined by the inputs collected from the intersection and can be used by the controller to learn. 
	• Input Layer: The input layer receives input data and passes it to the next layer in the network. It typically does not perform any computation on the input. In our case, this is defined by the inputs collected from the intersection and can be used by the controller to learn. 

	• Hidden Layers: Hidden layers process the input data and perform non-linear transformations to extract features and learn patterns in the data. The number of hidden layers and the number of neurons in each layer can vary depending on the complexity of the problem being solved. This will help the controller to analyze the inputs collected from the intersection for various patterns to facilitate the learning process. 
	• Hidden Layers: Hidden layers process the input data and perform non-linear transformations to extract features and learn patterns in the data. The number of hidden layers and the number of neurons in each layer can vary depending on the complexity of the problem being solved. This will help the controller to analyze the inputs collected from the intersection for various patterns to facilitate the learning process. 

	• Output Layer: The output layer produces the final output of the network. The number of neurons in the output layer depends on the task being performed. For example, in a binary classification task, the output layer would have a single neuron, whereas in a multi-class classification task, the output layer would have multiple neurons. This will form a list of phases with its estimated value from the model to determine which phase has the maximum cumulative rewards to be chosen for the next phase if exploita
	• Output Layer: The output layer produces the final output of the network. The number of neurons in the output layer depends on the task being performed. For example, in a binary classification task, the output layer would have a single neuron, whereas in a multi-class classification task, the output layer would have multiple neurons. This will form a list of phases with its estimated value from the model to determine which phase has the maximum cumulative rewards to be chosen for the next phase if exploita


	A deep neural network represents a neural network structure with one input layer, one output layer, and multiple middle layers, called hidden layers. The size of the input layer is the same as the size of the state. The size of the output layer is equal to the number of actions in the 
	action space, which is 4, the number of green phases in our model. The size of the hidden layers is determined by the number of layers and number of nodes for each layer. The number of nodes for each layer is fixed to be 64. The number of layers is a hyperparameter which will be tuned. 
	Every layer is fully connected, meaning each node will be passed as an input for the next layer. Each connection between two nodes is represented by a single value in our DNN parameter, 𝜃. Each node can be seen as a multiple regression model that includes all the node values from the previous layer and is weighted by the parameters in 𝜃 corresponding to this layer. The weighted sum will be reculated by the chosen activation function. 
	The activation function is a mathematical function that introduces non-linearity to the output of a neuron. It determines the output of a neuron based on the weighted sum of its inputs. Some common activation functions used in ANNs include: 
	• Sigmoid function: The sigmoid function maps any input value to a value between 0 and 1, making it useful for binary classification problems. However, it suffers from the vanishing gradient problem, which can make training deep networks difficult. 
	• Sigmoid function: The sigmoid function maps any input value to a value between 0 and 1, making it useful for binary classification problems. However, it suffers from the vanishing gradient problem, which can make training deep networks difficult. 
	• Sigmoid function: The sigmoid function maps any input value to a value between 0 and 1, making it useful for binary classification problems. However, it suffers from the vanishing gradient problem, which can make training deep networks difficult. 

	• ReLU function: The rectified linear unit (ReLU) function outputs the input directly if it is positive, and outputs 0 if the input is negative. ReLU has become a popular choice in deep learning due to its simplicity and ability to avoid the vanishing gradient problem. 
	• ReLU function: The rectified linear unit (ReLU) function outputs the input directly if it is positive, and outputs 0 if the input is negative. ReLU has become a popular choice in deep learning due to its simplicity and ability to avoid the vanishing gradient problem. 

	• Tanh function: The hyperbolic tangent (tanh) function maps input values to a range between -1 and 1, making it useful for regression problems. It is similar to the sigmoid function but has a steeper gradient, which can improve the convergence of the training process. 
	• Tanh function: The hyperbolic tangent (tanh) function maps input values to a range between -1 and 1, making it useful for regression problems. It is similar to the sigmoid function but has a steeper gradient, which can improve the convergence of the training process. 

	• Softmax function: The softmax function is commonly used in the output layer of a neural network to produce probabilities for each class in a multi-class classification problem. It ensures that the output probabilities sum to 1.0. 
	• Softmax function: The softmax function is commonly used in the output layer of a neural network to produce probabilities for each class in a multi-class classification problem. It ensures that the output probabilities sum to 1.0. 


	In our case, ReLU function is applied to be the activation function for each hidden layer. 
	Q-learning is a well-known reinforcement learning algorithm that is used to find an optimal policy for an agent in an environment by learning the action-value function. However, traditional Q-learning can face limitations when dealing with high-dimensional state and action spaces. 
	DNNs, on the other hand, are very good at approximating complex non-linear functions, making them a powerful tool for function approximation in reinforcement learning problems with high-dimensional state and action spaces. 
	By combining Q-learning with DNNs, we can approximate the action-value function with a deep neural network, a technique known as the deep Q-network (DQN). The DQN algorithm can learn directly from raw high-dimensional sensory inputs, such as images, without requiring a 
	manual feature extraction step. This can greatly simplify the design process, and enable the agent to automatically learn and extract relevant features from the environment. 
	Overall, DQN, combining Q-learning with DNNs, can lead to better performance and more efficient learning in complex reinforcement learning tasks with high-dimensional state and action spaces. 
	5.3 Variations of DQN 
	One of the limitations of DQN is its susceptibility to overestimation of Q-values, especially in the presence of noisy data. This can occur when the DNN overgeneralizes from the limited training data, resulting in overestimation of Q-values for some state-action pairs. Another limitation is the tendency of DQN to overfocus on specific state-action pairs, leading to suboptimal policies. This can be addressed using various modifications to the basic DQN algorithm, such as experience replay, double DQN, duelin
	5.3.1 Experience Replay 
	Experience replay is a technique used in deep reinforcement learning to improve the efficiency and stability of the learning process. The basic idea is to store experiences (tuples of state, action, reward, next state) in a replay buffer with size 𝐵, which is essentially a large dataset of past experiences. During training, some of the experiences, determined by the variable called batch size (𝑏),  are randomly sampled from the replay buffer and used to update the deep neural network, instead of using onl
	Experience is defined as a tuple of current state, action, reward, and next state, (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1). The experiences that aid the agent in learning from its interaction with the environment are stored in a fixed-size memory buffer. When the buffer is full, the oldest experience is replaced with the newest to retain the most recent experiences. In an ideal scenario, all past experiences could be used to calculate the loss function for improving the model, but this would significantly slow down the lea
	5.3.2 Double DQN 
	Double DQN is an extension of the original DQN algorithm that addresses the overestimation issue that can occur in Q-learning methods. In traditional Q-learning, the maximum action value for a given state is calculated using the same Q-network used to select actions, which can lead to overestimation of the action values. Double DQN uses two separate Q-networks to calculate the action values: one network is used to select actions, while the other is used to estimate the action values. The second network, cal
	actions. This approach reduces the overestimation issue that can occur in Q-learning and improves the stability and accuracy of the Q-values. 
	Target network update refers to periodically updating the weights of a separate neural network, known as the target network, that is used to estimate the target Q-values in the Q-learning update. 
	During training, the Q-learning update involves calculating the target Q-value for each action based on the current estimate of the Q-values and the observed reward and next state. In a standard DQN, the same neural network is used to estimate the current Q-values and the target Q-values. However, this can lead to instability in the training process, since the Q-learning update involves using the same neural network to generate the target and the prediction, leading to a feedback loop. 
	To address this, the target network is updated periodically (e.g., every N steps) by copying the weights of the current Q-network to the target network. This provides a more stable estimate of the target Q-values and prevents the feedback loop. The target network is not used for action selection during the training, only for estimating the target Q-values. 
	The DQN with experience replay and target network was introduced by Minh (2015) and will be adopted to train the traffic signal controller for the single intersection scenario in this research.  
	The pseudocode of the DQN with experience replay and target network algorithm used in this dissertation is listed below: 
	 
	Figure
	Figure 5.3-1. Algorithm: Deep Q-learning with Experience Replay and Target Network 
	5.4 Non-learning Traffic Signal Control Algorithms 
	To evaluate the effectiveness of the proposed DQN, we compared its performance against that of two traditional traffic control algorithms (Uniform and Webster's) as well as the more recent and advanced Max-pressure algorithm. This was done to generate similar Measures of Effectiveness (MoEs) and to demonstrate the performance of our proposed model.  
	5.4.1 Uniform Traffic Controller 
	A uniform traffic controller (UTC) is a type of traffic control system where the signal timing plan is fixed and does not change dynamically based on real-time traffic conditions. The UTC uses a pre-determined signal plan to control traffic at an intersection, which is often designed to provide uniform signal timings for each phase of the traffic signal cycle. This type of traffic control system is widely used in areas with relatively stable traffic demand patterns and limited traffic variations. However, U
	• Here is a general procedure for implementing a uniform traffic controller: 
	• Here is a general procedure for implementing a uniform traffic controller: 
	• Here is a general procedure for implementing a uniform traffic controller: 

	• Set the initial phase to be the first phase in the sequence. 
	• Set the initial phase to be the first phase in the sequence. 

	• Allocate equal green time to each phase. 
	• Allocate equal green time to each phase. 

	• Monitor traffic and detect when a phase has no demand. When this occurs, skip that phase in the sequence. 
	• Monitor traffic and detect when a phase has no demand. When this occurs, skip that phase in the sequence. 

	• When all phases have been completed, return to the first phase and start the cycle over again. 
	• When all phases have been completed, return to the first phase and start the cycle over again. 


	The only hyperparameter in UTC is green duration for each phase (we use the same green duration for each phase), which will be tuned with the given traffic demand. 
	5.4.2 Webster’s Traffic Controller 
	Webster's traffic controller, also known as the Webster method, is a type of traffic signal control algorithm developed by Anthony G. Webster in the 1950s. It is a fixed-time control method, where the green times for each phase are predetermined based on traffic flow rates and the geometric characteristics of the intersection. 
	The Webster method assumes that the traffic flow rates are known and constant, and the signal timing plan is set in advance. The controller calculates the total cycle time and the duration of each green interval based on the traffic demands of each approach, the saturation flow rate, and the intersection geometry. The cycle time is the total duration of one complete signal sequence, while the green interval is the period of time when a particular movement is allowed to proceed through the intersection. 
	Webster's method is relatively simple and requires minimal input data. It is widely used for low- to moderate-volume intersections and has been the basis for other traffic control methods, such as the fixed-time coordinated method. However, it may not be suitable for high-volume intersections or complex traffic conditions, where adaptive signal control methods may be more effective.  
	We implement an adaptive Webster’s method by collecting traffic demand through a fixed time interval to average the traffic demand and assume that the next interval with the same length will have the similar traffic demand. Therefore, the recalculated green split will be reasonable. 
	The procedure of Webster's traffic controller can be summarized as follows: 
	• Collect traffic data: Traffic volume data is collected from the intersection, including the number of vehicles arriving on each lane, the queue length, and the delay time. 
	• Collect traffic data: Traffic volume data is collected from the intersection, including the number of vehicles arriving on each lane, the queue length, and the delay time. 
	• Collect traffic data: Traffic volume data is collected from the intersection, including the number of vehicles arriving on each lane, the queue length, and the delay time. 

	• Determine cycle time: The total cycle time for the traffic signal is determined based on the traffic demand and the minimum green time required for each phase. 
	• Determine cycle time: The total cycle time for the traffic signal is determined based on the traffic demand and the minimum green time required for each phase. 

	• Calculate green times: The green time for each phase is calculated based on the traffic demand and the pre-determined fixed time ratios for each phase. 
	• Calculate green times: The green time for each phase is calculated based on the traffic demand and the pre-determined fixed time ratios for each phase. 


	• Implement the signal timings: The signal timings for each phase are programmed into the traffic signal controller, which will operate the traffic signal according to the pre-determined timings. 
	• Implement the signal timings: The signal timings for each phase are programmed into the traffic signal controller, which will operate the traffic signal according to the pre-determined timings. 
	• Implement the signal timings: The signal timings for each phase are programmed into the traffic signal controller, which will operate the traffic signal according to the pre-determined timings. 

	• Monitor traffic flow: The traffic flow at the intersection is monitored to ensure that the traffic signal timings are effective and efficient. If necessary, the timings can be adjusted based on the traffic data collected. 
	• Monitor traffic flow: The traffic flow at the intersection is monitored to ensure that the traffic signal timings are effective and efficient. If necessary, the timings can be adjusted based on the traffic data collected. 

	• Repeat the process: The above steps are repeated on a regular basis, usually daily, to ensure that the traffic signal timings are optimal for the current traffic demand. 
	• Repeat the process: The above steps are repeated on a regular basis, usually daily, to ensure that the traffic signal timings are optimal for the current traffic demand. 


	The hyperparameters in Webster’s method include minimum cycle length, maximum cycle length, saturation flow rate, and time interval to recalculate the green time split. All of these hyperparameters will be tuned to obtain the best performance of Webster’s method for the performance comparison with other controllers. 
	5.4.3 Max-pressure Traffic Signal Controller 
	Max-pressure is a traffic control algorithm that aims to maximize the flow of traffic through an intersection by prioritizing the lanes with the highest pressure, which is defined as the difference between the number of vehicles entering the lane and the number of vehicles leaving the lane. The Max-pressure algorithm is a decentralized control algorithm, which means that each lane controller makes its own decisions based on local information, without requiring communication or coordination with other contro
	As indicated by the previous equation, a phase's pressure can be negative, which implies that the downstream lane has a greater vehicle queue than its incoming lane. Consequently, its pressure value turns out to be negative, making it almost impossible to be selected. The phases with higher pressure are selected more frequently in order to alleviate the pressure in the system. In this study, the Max-pressure algorithm necessitates traffic data from the intersection's surroundings, particularly the length of
	The procedure of Max-pressure traffic controller can be explained below. 
	• At each time step, the controller obtains the current queue length of each outgoing lane and calculates the pressure of each phase. The phase with the highest pressure value is selected as the next phase to be executed. If there are multiple phases with the same highest pressure value, one is selected randomly. 
	• At each time step, the controller obtains the current queue length of each outgoing lane and calculates the pressure of each phase. The phase with the highest pressure value is selected as the next phase to be executed. If there are multiple phases with the same highest pressure value, one is selected randomly. 
	• At each time step, the controller obtains the current queue length of each outgoing lane and calculates the pressure of each phase. The phase with the highest pressure value is selected as the next phase to be executed. If there are multiple phases with the same highest pressure value, one is selected randomly. 

	• After a phase is selected, the controller assigns a green time duration for the phase based on a pre-defined green time ratio. The green time ratio is the proportion of 
	• After a phase is selected, the controller assigns a green time duration for the phase based on a pre-defined green time ratio. The green time ratio is the proportion of 


	the total green time that a phase is assigned. The total green time is the sum of the green times of all selected phases in a cycle. 
	the total green time that a phase is assigned. The total green time is the sum of the green times of all selected phases in a cycle. 
	the total green time that a phase is assigned. The total green time is the sum of the green times of all selected phases in a cycle. 

	• The Max-pressure controller repeats this process in each time step to ensure that the pressure of the system is reduced as much as possible.  
	• The Max-pressure controller repeats this process in each time step to ensure that the pressure of the system is reduced as much as possible.  


	There is only one hyperparameter in Max-pressure traffic signal control and that is the minimum green duration for a given phase, denoted as 𝑡𝑔𝑟𝑒𝑒𝑛. The hyperparameter will be optimized in order to achieve the optimal performance. 
	5.5 Hyperparameter Tuning 
	In machine learning, there are two types of parameters: model parameters and hyperparameters. 
	Model parameters are learned during the training process. They are the weights and biases that the model learns from the data to make predictions. In supervised learning, model parameters are updated using an optimization algorithm to minimize the difference between the predicted outputs and the actual outputs for a given set of input data. For example, in a linear regression model, the model parameters are the slope and intercept of the line that best fits the data. 
	Hyperparameters are set by the user before training the model. They are not learned from the data, but they affect how the model learns the model parameters. Hyperparameters control aspects of the training process such as the learning rate, regularization strength, and the number of hidden layers in a neural network. For example, in a neural network, the model parameters are the weights and biases of the neurons, while the hyperparameters are the learning rate, the number of hidden layers, the number of neu
	Both model parameters and hyperparameters are important in machine learning, and selecting the right values for both can significantly affect the performance of the trained model. 
	5.5.1 Hyperparameters in DQN 
	In machine learning, hyperparameters are parameters that are not learned from the data, but are set by the user before training the model. They are called "hyperparameters" because they determine how the model's parameters (which are learned from the data) will be set during the training process. 
	Some examples of hyperparameters include: 
	• Learning rate: determines how much the model weights are updated during training. 
	• Learning rate: determines how much the model weights are updated during training. 
	• Learning rate: determines how much the model weights are updated during training. 

	• Number of hidden layers: determines how many layers are in the neural network. 
	• Number of hidden layers: determines how many layers are in the neural network. 

	• Batch size: determines how many examples are used in each iteration of training. 
	• Batch size: determines how many examples are used in each iteration of training. 

	• Activation function: determines the function used to transform the input data in each layer. 
	• Activation function: determines the function used to transform the input data in each layer. 


	Hyperparameters are typically set using trial and error or more advanced optimization methods such as grid search, random search, or Bayesian optimization. Selecting the right hyperparameters is important because it can significantly affect the performance of the trained model. 
	There is no universal rule of determining the best combination of hyperparameters due to the complexity of real world environment and therefore to achieve a good machine learning model, hyperparameter tuning is required, although many research efforts do not even mention it. To our knowledge, this is the first time that a full suite of hyperparameter tuning has been applied to the traffic signal control problem and a detailed explanation of the process for applying the reinforcement learning model to traffi
	Because of the large number of hyperparameters in DQN and the many potential values for each, it is impractical to exhaustively search for the best combination. To simplify the process, this research employs the commonly used method of grid search to tune the hyperparameters. Grid search involves testing all possible combinations of hyperparameters from a predetermined list, and training the model with each combination for a small fraction of the total training time required to achieve convergence to an acc
	It should be noted that the value of some hyperparameters may be adjusted during the training process. For instance, the learning rate may be decreased as the agent gains a better understanding of the environment and the model reaches a state where a lower learning rate may allow for more exploration of local areas that were not reachable with the larger learning rate. 
	It should be noted that the value of some hyperparameters may be adjusted during the training process. For instance, the learning rate may be decreased as the agent gains a better understanding of the environment and the model reaches a state where a lower learning rate may allow for more exploration of local areas that were not reachable with the larger learning rate. 
	Table 5.5-1
	Table 5.5-1

	 lists all the tuned hyperparameters along with a brief definition for each. 

	Table 5.5-1. Hyperparameters tuned in DQN 
	Hyperparameters 
	Hyperparameters 
	Hyperparameters 
	Hyperparameters 
	Hyperparameters 

	Definition 
	Definition 


	Reinforcement Learning Related Hyper-parameters 
	Reinforcement Learning Related Hyper-parameters 
	Reinforcement Learning Related Hyper-parameters 

	 
	 


	Learning Rate 
	Learning Rate 
	Learning Rate 

	To govern the pace the algorithm learns the parameter through previous and current rewards 
	To govern the pace the algorithm learns the parameter through previous and current rewards 


	Discount Factor 
	Discount Factor 
	Discount Factor 

	Discount the future reward so not to have an infinite calculation 
	Discount the future reward so not to have an infinite calculation 


	Temporal Difference Steps 
	Temporal Difference Steps 
	Temporal Difference Steps 

	Number of steps the reward will be used to calculate the target q value 
	Number of steps the reward will be used to calculate the target q value 




	Neural Network Related Hyper-parameters 
	Neural Network Related Hyper-parameters 
	Neural Network Related Hyper-parameters 
	Neural Network Related Hyper-parameters 
	Neural Network Related Hyper-parameters 

	 
	 


	Number of Hidden Layers 
	Number of Hidden Layers 
	Number of Hidden Layers 

	Number of layers between the input layer and output layer 
	Number of layers between the input layer and output layer 


	Target Frequency 
	Target Frequency 
	Target Frequency 

	Number of time steps to update the target neural network 
	Number of time steps to update the target neural network 




	 
	5.5.2 Learning Rate 
	In reinforcement learning, the learning rate is a hyperparameter that determines the degree to which the agent's Q-values are updated based on new experiences. It controls the step size at which the agent updates its estimates of the optimal Q-values for each action. A small learning rate means the agent will change its estimates slowly, while a large learning rate means it will update them more quickly. 
	The learning rate is typically set to a small value (e.g., 0.1 or 0.01) to ensure the agent learns gradually and avoids overfitting to specific experiences. However, the optimal learning rate can depend on the specific environment and problem being tackled, so it is often a hyperparameter that needs to be tuned through experimentation.  
	Based on the existing research on single intersection, we select three values for the learning rate to be tuned, including , 10−3, 10−4,  and 10−5. 
	5.5.3 Discount Factor 
	In reinforcement learning, the discount factor is a parameter that determines the importance of future rewards in an agent's decision-making process. 
	The discount factor, denoted by γ (gamma), is a value between 0 and 1 that represents how much an agent values future rewards. A value of 0 means that the agent only cares about immediate rewards, while a value of 1 means that the agent values all rewards equally, regardless of when they occur. 
	Three values are used to find the optimal one, 0.5, 0.9, and 0.99. 
	5.5.4 Temporal Difference Step 
	Temporal Difference (TD) is a learning method used in reinforcement learning, where the agent learns to predict the value of the next state by updating its current estimate of the value function based on the difference between the observed reward and the predicted reward. The TD step involves calculating the TD error, which is the difference between the observed reward and the predicted reward, and updating the value function estimate based on this error. 
	In the TD step, the agent observes the current state, takes an action, and receives a reward and the next state. The agent uses the observed reward and the estimated value of the next state 
	to calculate the TD error. The TD error is then used to update the value function estimate for the current state. This process is repeated for each time step, allowing the agent to learn to predict the value of the next state based on its current estimate of the value function. The size of the TD step is controlled by the learning rate and the discount factor. 
	We use two values in the tuning process for the TD Step 1 and 2. 
	5.5.5 Number of Hidden Layers 
	The number of hidden layers in a reinforcement learning (RL) algorithm depends on various factors, such as the complexity of the problem and the size of the input and output spaces. 
	In general, deep reinforcement learning algorithms, which use deep neural networks as function approximators, often have multiple hidden layers. The number of hidden layers can range from a few to dozens, depending on the complexity of the problem and the amount of available training data. 
	However, it is important to note that the number of hidden layers is not the only factor that affects the performance of an DQN algorithm. Other factors such as the number of neurons in each layer, the activation functions used, and the optimization algorithm also play important roles in the success of a DQN algorithm. 
	To reduce the number of combinations of hyperparameter tuning, we use a fixed number (64) of nodes in each hidden layer and only tune the number of hidden layers to achieve the goal of tuning the architecture of the DNNs. Based on the existing research about the single intersection scenario as well as the input definition in our simulation, we choose two values for the number of hidden layers, 3 and 6, resulting in 5 and 8 total layers for the DNNs combining with the input and output layers. 
	5.5.6 Target Frequency 
	In reinforcement learning, the target frequency refers to how often the target network is updated to match the parameters of the primary network. The target network is a separate copy of the primary network used to estimate the value of the next state in the Q-learning algorithm. 
	The target network is updated less frequently than the primary network to provide a more stable and consistent target for the Q-learning algorithm. The target frequency is a hyperparameter that determines how often the target network is updated, and it can affect the stability and convergence speed of the algorithm. 
	A common approach is to update the target network every 𝐶steps, where 𝐶 is the target frequency hyperparameter. This approach is used in the DQN algorithm, where the target network is updated every fixed number of steps. 
	We choose two values for the target frequency, 64 and 128. 
	 
	5.5.7 Minimum Green Duration 
	We also tuned the minimum green duration. This value determines the minimum green time for each phase. Two values are included in the tuning process, 6 and 12 seconds. 
	5.5.8 Non Tuned Hyperparameters 
	Some of the hyperparameters in the DQN are not tuned based on the fact that they are easy to be determined based on the previous research and application. In addition, it is also an effective method to reduce the total number of combinations of hyperparameters in the tuning process and hence significantly reduce the computing time. 
	The replay buffer with size, denoted by 𝐵, saves a certain number of past experiences of the agent to help calculate the loss of DQN and facilitate the model to converge. It seems a larger size of replay buffer favors better model performance. However, this should be varied based on the environment. A good way to determine it is it should be large enough to collect different types of experience so the agent can handle almost every state-action pair. We use 40000 for the replay buffer size in the single int
	Batch size, denoted by 𝑏, determines the number of experiences randomly selected from the replay buffer to be passed to the model. The minimum value of it can be 1 and the largest is the size of the replay buffer. Normally, this value is equal to the power of 2 to take advantage of the computer memory unit. We use 128 in our DQN. 
	The greedy factor refers to the degree to which the agent prioritizes exploitation of the current best action versus exploration of new actions. A value of 1 for the greedy factor means the agent always chooses the current best action, while a value of 0 means the agent always chooses a random action. A common approach is to start with a high value for the greedy factor to encourage exploration, and then gradually reduce it over time to focus more on exploitation. This trade-off between exploration and expl
	Episode defines the time of the training process, meaning the larger value, the longer experiment will be required. This hyperparameter is not explicitly tuned since we can easily increase the learning time as needed. For the hyperparameter tuning, we use 5000 as the value for the episode. Since each simulation lasts 3 hours, the total training time for each hyperparameter combination is equal to repeating the 3-hour simulation 5000 times, which should be a large enough simulation period to get a sense of t
	5.5.9 Summary 
	Table 5.5-2
	Table 5.5-2
	Table 5.5-2

	 summarizes the parameters used in the tuning and training process. If there is only one single value, that parameter is not tuned, otherwise, it is a tuned parameter. 

	Table 5.5-2. Parameters in DQN including hyperparameter values 
	Parameters 
	Parameters 
	Parameters 
	Parameters 
	Parameters 

	Value/Values 
	Value/Values 



	Learning Rate 
	Learning Rate 
	Learning Rate 
	Learning Rate 

	[0.0001, 0.00001, 0.001] 
	[0.0001, 0.00001, 0.001] 


	Discount Factor 
	Discount Factor 
	Discount Factor 

	[0.5, 0.9, 0.99] 
	[0.5, 0.9, 0.99] 


	TD Step 
	TD Step 
	TD Step 

	[1, 2] 
	[1, 2] 


	Number of Hidden Layers 
	Number of Hidden Layers 
	Number of Hidden Layers 

	[3, 6] 
	[3, 6] 


	Target Frequency 
	Target Frequency 
	Target Frequency 

	[64, 128] 
	[64, 128] 


	Green Duration 
	Green Duration 
	Green Duration 

	[6, 12] 
	[6, 12] 


	Episodes 
	Episodes 
	Episodes 

	5000 
	5000 


	Replay Buffer Size 
	Replay Buffer Size 
	Replay Buffer Size 

	40000 
	40000 


	Batch Size 
	Batch Size 
	Batch Size 

	128 
	128 


	Number of Nodes Per Hidden Layer 
	Number of Nodes Per Hidden Layer 
	Number of Nodes Per Hidden Layer 

	64 
	64 


	Activation Function 
	Activation Function 
	Activation Function 

	ReLU 
	ReLU 




	 
	Overall, we have total of 144 combinations of hyperparameters in the tuning process. Hyperparameters for non-learning controllers are list in 
	Overall, we have total of 144 combinations of hyperparameters in the tuning process. Hyperparameters for non-learning controllers are list in 
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	. 

	 
	Table 5.5-3. Hyperparameters for non-learning controllers 
	Hyperparameters 
	Hyperparameters 
	Hyperparameters 
	Hyperparameters 
	Hyperparameters 

	Values 
	Values 



	Uniform Traffic Controller 
	Uniform Traffic Controller 
	Uniform Traffic Controller 
	Uniform Traffic Controller 

	 
	 


	Green Duration 
	Green Duration 
	Green Duration 

	range(5, 26) 
	range(5, 26) 


	Webster’s Traffic Controller 
	Webster’s Traffic Controller 
	Webster’s Traffic Controller 

	 
	 


	Minimum Cycle Length 
	Minimum Cycle Length 
	Minimum Cycle Length 

	[40, 60, 80] 
	[40, 60, 80] 


	Maximum Cycle Length 
	Maximum Cycle Length 
	Maximum Cycle Length 

	[160, 180, 200] 
	[160, 180, 200] 


	Saturation Flow Rate 
	Saturation Flow Rate 
	Saturation Flow Rate 

	[0.3, 0.38, 0.44] 
	[0.3, 0.38, 0.44] 


	Time Interval (recalculate critical flow 
	Time Interval (recalculate critical flow 
	Time Interval (recalculate critical flow 

	[600, 900, 1800] 
	[600, 900, 1800] 
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	ratio) 


	Max-pressure Traffic Controller 
	Max-pressure Traffic Controller 
	Max-pressure Traffic Controller 

	 
	 


	Green Duration 
	Green Duration 
	Green Duration 

	range(5, 26) 
	range(5, 26) 




	 
	All controllers share the same yellow duration 3 seconds and all red duration 2 seconds. 
	5.6 Simulation Platform 
	5.6.1 Network 
	In accordance with Chapter 4, we utilized SUMO for the training and testing phases. The experiment was performed on a single intersection. The intersection comprises four legs, each of which is inclusive of three lanes: two straight movement lanes and one left-turn lane. The length of each lane is 656 feet, equivalent to approximately 200 meters. To reflect the local street environment, the design speed for all lanes is set at 40 mph. It is important to note that left-turn lanes only permit left turns, but 
	5.6.2 Demand 
	As outlined in Chapter 4, the SUMO software generates demand through the associated demand module, which is discussed in section 4.3.2. The origin-destination (OD) pattern is entirely random, meaning that there is no predetermined ratio between straight movement and left turn. The hourly distribution of the demand is modeled using an exponential function with a sine wave to generate a random distribution of the demand and create unpredictable traffic patterns for the simulations. Two types of total demand a
	5.6.3 Measures of Effectiveness 
	The evaluation of the traffic signal controllers' performance is based on several MoEs, including the average travel time, standard deviation of travel time, queue length, and total system delay. Once the training is complete and an acceptable DQN is achieved, we will conduct 50 simulations, each lasting for 3 hours and using random seeds to ensure unbiased results. The average travel time is computed by dividing the total system travel time of all vehicles in the system by the number of vehicles. At the in
	5.6.4 Code 
	We utilized an existing framework, developed by Genders and Razavi (2019), to compare the performance of various traffic signal controllers, including Uniform, adaptive Webster's, Max-pressure, and our proposed DQN with experience replay and target network. Although the framework already included the code for these controllers, we had to develop our own code for the DQN with a different reward function. However, the original code had not been maintained for years and required significant effort to make it f
	We utilized an existing framework, developed by Genders and Razavi (2019), to compare the performance of various traffic signal controllers, including Uniform, adaptive Webster's, Max-pressure, and our proposed DQN with experience replay and target network. Although the framework already included the code for these controllers, we had to develop our own code for the DQN with a different reward function. However, the original code had not been maintained for years and required significant effort to make it f
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	5.7 Results 
	5.7.1 Hyperparameter Tuning Results 
	In Figure 1, the results of hyperparameter tuning are depicted for both learning and non-learning traffic controllers. Figure 2 presents a consolidated view of all the hyperparameter tuning results in a single figure. 
	 
	Figure
	Figure 5.7-1. Hyperparameter tuning results for each controller 
	 
	Figure
	Figure 5.7-2. Hyperparameter tuning results for all controllers in one graph 
	All sorted hyperparameter tuning results are listed from Appendix 3 to Appendix 6. 
	It should be noted that the purpose of hyperparameter tuning is to enable the machine learning model to evaluate its initial performance using various combinations of model and hyperparameters. However, in the case of non-learning traffic controllers, the hyperparameter tuning process explores the performance of each hyperparameter configuration to identify the optimal performance for each controller with a specific parameter setting. As a result, our analysis of the hyperparameter tuning results primarily 
	 The results indicate that DQN performance is significantly affected by the choice of hyperparameters. Therefore, it is highly recommended and necessary to perform hyperparameter tuning before training any machine learning model, as the performance of a learning model cannot be guaranteed by any specific combination of hyperparameters. This is true not only for more complex frameworks that include multiple hyperparameters but also for simpler ones like the reinforcement learning framework, Q-learning.  
	The presence of a grouping effect can be observed with respect to the learning rate and the discounting factor, where a discounting factor of 0.99, which is close to 1, results in poor performance, regardless of the configuration of other parameters. Additionally, the learning rate is an important hyperparameter that has a significant impact on the model performance. This finding confirms the conclusion of the study that the learning rate plays a crucial role in ensuring that the model converges at an appro
	Interestingly, the other hyperparameters do not exhibit significant differences across different settings. In the case of the number of hidden layers, it is unlikely that adding three additional hidden layers would be necessary to extract more relevant information and enhance 
	the model's performance in our single intersection scenario. Similarly, the TD step, which involves calculating one or two immediate rewards to update the DNN model, does not appear to have a significant impact. The same is true for the update frequency, which follows a similar trend.  
	In summary, our experiments have demonstrated that hyperparameter tuning is crucial for achieving optimal performance when using DQN, as it is highly sensitive to the choice of hyperparameters. Among the hyperparameters that we examined, the learning rate and discount factor were found to be the most important in terms of their impact on the model's performance.  
	After analyzing the hyperparameter tuning results, we selected the combination of hyperparameters that produced the best preliminary results in terms of the lowest average travel time and standard deviation of travel time for further training the DQN model. The table below provides an overview of all the parameters that were used in the DQN training process, as well as the hyperparameters for the non-learning traffic controllers. 
	5.7.2 Traffic Controller Performance Comparison 
	Based on the results of hyperparameter tuning, we established the value of each parameter for the extended training process of our DQN model. The hyperparameter tuning process involved 5000 episodes of 3-hour simulations, which had already demonstrated the agent's potential to outperform other non-learning traffic controllers in terms of average travel time and standard deviation of travel time, as shown in 
	Based on the results of hyperparameter tuning, we established the value of each parameter for the extended training process of our DQN model. The hyperparameter tuning process involved 5000 episodes of 3-hour simulations, which had already demonstrated the agent's potential to outperform other non-learning traffic controllers in terms of average travel time and standard deviation of travel time, as shown in 
	Figure 5.7-2
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	. Consequently, we decided to initiate a new training process using the chosen hyperparameters, but with a larger number of episodes. One reason for this decision was our method of formulating the epsilon, which is the ratio of exploration and exploitation. Instead of continuing to train the best-performing model from the hyperparameter tuning process, we chose to start anew.  

	As previously stated, we gradually decreased the value of epsilon during the training process to enable the agent to explore more at the early stages and exploit more at the end of the process. By starting a new training process with a larger number of episodes, we can provide the agent with additional opportunities to explore and identify the most effective direction for improving its performance during training by adding more episodes. 
	Our DQN model underwent training for 20,000 episodes, which equates to 20,000 3-hour simulations based on the given demand of approximately 6,000 vehicles in the single intersection. 
	Our DQN model underwent training for 20,000 episodes, which equates to 20,000 3-hour simulations based on the given demand of approximately 6,000 vehicles in the single intersection. 
	Figure 5.7-3
	Figure 5.7-3

	 depicts the system-level performance of all controllers in terms of average vehicle travel time, mean vehicle travel time, and standard deviation of vehicle travel time.  

	 
	Figure
	Figure 5.7-3. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand 
	 
	Figure
	Figure 5.7-4. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand 
	Figure 5.7-4
	Figure 5.7-4
	Figure 5.7-4

	 depicts the intersection-level results, encompassing vehicle queue length and vehicle delays. In a single simulation, we should have 10,800 results for each time step. To smooth out the lines, we calculated the average values every minute, reducing the data to 180. 

	For each traffic controller, we conducted 32 simulations, resulting in 32 different outcomes. In 
	For each traffic controller, we conducted 32 simulations, resulting in 32 different outcomes. In 
	Figure 5.7-4
	Figure 5.7-4

	, the solid line corresponds to the mean value obtained from these 32 results, while the shaded area indicates the 95% confidence interval with alpha = 0.05. During this stage of the analysis, the DQN model does not explore the environment further. Instead, it chooses the phase that maximizes the reward at each time step. 

	For the intersection-level results, the x-axis represents the simulation time step, which is 180 minutes (3 hours), while the y-axis shows the queue length measured by the number of vehicles in the intersection by summing all stopped vehicles from its incoming lanes in the top graph and total delay of all vehicles in the lower graph.  
	Based on the results at both the system level and intersection level, our DQN model outperforms all other considered controllers in terms of the chosen MoEs, with Max-pressure coming in second and the uniform traffic controller performing the worst, which is not surprising since we used fully random demand in the experiment. It is expected and well-known that adaptive controllers are more efficient.  
	It should be noted that machine learning models are often unable to provide a clear explanation for why they perform better than non-learning controllers. This is a limitation of machine learning models, and more research is needed to make their decision-making process more explicit. However, one observation that can be made is the pattern of phase selection by the DQN. 
	It should be noted that machine learning models are often unable to provide a clear explanation for why they perform better than non-learning controllers. This is a limitation of machine learning models, and more research is needed to make their decision-making process more explicit. However, one observation that can be made is the pattern of phase selection by the DQN. 
	Figure 5.7-5
	Figure 5.7-5

	 depicts the percentage of frequency each phase is selected in one simulation for the DQN controller, while 
	Figure 5.7-6
	Figure 5.7-6

	 shows the same for the Max-pressure. It is evident that the DQN seldom chooses the left-turn movement, accounting for only 5% of the total for the left-turn phases. It is plausible that the DQN recognizes that the straight movement phases have unprotected left-turn green light for those vehicles and that choosing the straight movement with unprotected left-turn phases is more efficient. 

	 
	Figure
	Figure 5.7-5. Frequency of phase selection in one simulation for DQN controller with 6,000 Demand 
	 
	Figure
	Figure 5.7-6. Frequency of phase selection in one simulation for Max-pressure controller with 6,000 Demand 
	In addition to presenting the percentage of Max-pressure phases, we include the phase with the highest pressure based on queue length, as it is also aperiodic. In our simulations, traffic demand is random and sometimes results in more left-turning vehicles than those traveling straight, leading to more frequent activation of left-turn phases compared to the DQN controller, as indicated in 
	In addition to presenting the percentage of Max-pressure phases, we include the phase with the highest pressure based on queue length, as it is also aperiodic. In our simulations, traffic demand is random and sometimes results in more left-turning vehicles than those traveling straight, leading to more frequent activation of left-turn phases compared to the DQN controller, as indicated in 
	Figure 5.7-5
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	 and 
	Figure 5.7-6
	Figure 5.7-6

	. This demonstrates the benefit of the DQN approach, which receives similar inputs but has learned a policy that utilizes unprotected left-turn green allocations for left-turn traffic instead of resorting to protected left-turn phases that introduce additional delays to the system.    

	There is another possible reason related to the definition of the state. As we included the vehicle density and queue length for each lane, the agent may have learned to differentiate between them and create predictions to extend certain phases in order to reduce system loss time. It is also possible that the machine learning controller finds something that has not been found by the most smart human beings.  
	We also tested the model with lower traffic demand (4,000) without hyperparameter tuning and used the same hyperparameter settings from the previous experiment, which also resulted in the best performance compared to non-learning traffic controllers, as shown in 
	We also tested the model with lower traffic demand (4,000) without hyperparameter tuning and used the same hyperparameter settings from the previous experiment, which also resulted in the best performance compared to non-learning traffic controllers, as shown in 
	Figure 
	Figure 
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	Figure
	Figure 5.7-8
	Figure 5.7-8
	. We did not initiate another round of training but utilized the results from the traffic demand of 6,000 to this lower demand scenario.  

	 
	Figure
	Figure 5.7-7. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand 
	 
	Figure
	Figure 5.7-8. Intersection Level Performance Comparison of DQN and Non-learning Controllers with 4,000 Demand 
	It is reasonable that the previously trained DQN model could perform well with lower traffic demand since it had already encountered similar conditions during the training process and learned to generalize its performance. This result highlights the potential of machine learning algorithms, as they cannot only learn from higher traffic demand scenarios but also generalize their performance to lower traffic demand scenarios, outperforming non-learning traffic controllers. 
	5.8 Conclusion 
	To ensure the optimal performance of our proposed DQN model, we conducted experiments on various hyperparameter settings. This approach sets our research apart from others, as most of them do not perform hyperparameter tuning before the actual training process. The hyperparameter tuning process not only helped us optimize the non-learning traffic controllers, but also laid a strong foundation for the actual DQN training process.  
	Based on the findings of the hyperparameter tuning, we discovered that the performance of our proposed DQN is highly influenced by the configuration of its hyperparameters. Specifically, the learning rate and discount factor were identified as the most critical hyperparameters in our single intersection scenario, while other involved hyperparameters appear to be less significant.  
	Our proposed DQN, equipped with experience replay, target network, and optimized hyperparameters, has been shown through simulation experiments to provide the best performance in terms of MoEs such as average travel time, queue length, and vehicle delays. Moreover, the model is capable of generalizing well to lower traffic demand scenarios, thanks to its training process with higher traffic demand.  
	Although coding and mathematical knowledge of the reinforcement learning framework are required, transportation knowledge is only minimally necessary to understand DQN. In addition to the traffic controller's principles, traditional complex traffic flow models do not have to be explicitly formulated since the AI can learn them during the training process. This advantage allows anyone interested in traffic signal controller algorithms to explore better machine learning control algorithms without extensive kn
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	6.1 Overview 
	Traffic incidents within transportation networks not only raise safety concerns for travelers but also cause significant delays in the system. Traffic Incident Management (TIM) was established to mitigate the adverse effects of such incidents by promptly resolving them and restoring transport infrastructure services. While attempts have been made to use traffic signal coordination to lessen the impact of incidents, the infrequency of these events and the complexity of modeling the relationship between incid
	The aim of this study is to explore the application of machine learning techniques to reduce the consequences of traffic incidents, building upon prior research that demonstrated the superiority of DQN with hyperparameter tuning over conventional traffic control techniques such as Uniform, Webster's, and Max-pressure. This approach circumvents the need for explicit modeling of traffic flow and its relationship with signal plan configurations. Our research includes an incident generation module, as described
	We will evaluate the performance of the DQN in the context of traffic incidents by conducting experiments using two distinct network configurations: a two-intersection corridor and a 2x2 grid network, both featuring incident occurrences. Moreover, we will analyze two separate traffic demand scenarios with varying total vehicle counts to confirm the effectiveness of the DQN. To improve the AI controller's capacity to handle traffic incidents, we introduce a new state definition for the DQN. 
	6.2 Literature Review 
	Traffic incident management is a critical aspect of transportation system operations. It involves the coordination of multiple agencies to promptly detect, respond to, and clear incidents on road networks to minimize congestion, reduce secondary crashes, and improve overall transportation efficiency. Traffic signal control strategies are essential tools that can be leveraged to facilitate better traffic incident management. This literature review provides an overview of the key research conducted on traffic
	Carson et al. (2010) conducted a comprehensive review of traffic incident management practices in the United States. The author collected data from various sources, including federal and state departments, transportation agencies, and emergency response organizations. The study identifies best practices across different aspects of traffic incident management, such as incident detection, response, clearance, and communication. The study concludes that adopting best practices in traffic incident management ca
	communication, and standardized protocols in achieving better traffic incident management outcomes. Additionally, it emphasizes the need for continuous training, performance measurement, and improvement to ensure the successful implementation of best practices. 
	Goodall et al. (2013) conducted a qualitative analysis of traffic incident management practices across multiple agencies. Interviews and surveys were used to collect data on collaboration and communication among agencies involved in traffic incident management. The study concludes that effective inter-agency collaboration and communication are crucial to successful traffic incident management. It recommends the development of integrated systems and standardized procedures to facilitate better collaboration 
	These studies show performance improvement of transportation systems can be gained by adjusting the traffic signal control plan during traffic incidents in the network. One of many difficulties is how to provide a solid and reasonable strategy to adjust the traffic signal plan accordingly. Gartner et al. (2001) reviewed existing Traffic-Responsive Plan Selection (TRPS) systems and their methodologies. It also conducted a comparative analysis of their performance in various traffic scenarios. The study finds
	Traditional research uses model-based methods and microsimulation to investigate the proposed signal control plan optimization strategies. Mirchandani and Head (2001) reviewed model-based traffic signal control strategies, focusing on multiple-objective optimization approaches. The authors explore various algorithms and their applicability in incident management scenarios. The study concludes that model-based traffic signal control strategies can effectively address multiple objectives, such as minimizing d
	Aboudolas et al. (2010) explores the use of Model Predictive Control (MPC) as an adaptive traffic signal control strategy. It develops a simulation model to evaluate the performance of MPC in various traffic scenarios, including incidents. The study finds that MPC can effectively adjust traffic signal timings during incidents, leading to reduced delays and improved traffic flow. It recommends further research on the development and evaluation of MPC in real-world traffic scenarios.  
	One significant limitation of using model-based methods to find the optimal traffic signal control plan for reducing the impact of network traffic incidents is the dependenence on the model accuracy . Due to the complexity of the transportation network system, this is too hard to be practical.  
	Current research has begun to use machine learning methods to conquer the limitation of traditional model-based methods of traffic signal adjustment. Hadiuzzaman et al. (2012) proposed a methodology for adjusting traffic signal timings during incidents using Artificial Neural Networks (ANNs). It develops an ANN-based model and evaluates its performance in terms of reducing delays and congestion in simulated traffic scenarios. The study concludes that the proposed ANN-based methodology can effectively adjust
	incidents, leading to reduced delays and improved traffic flow. It recommends further research on the development and evaluation of ANN-based traffic signal control strategies in real-world traffic scenarios. However, the research did not explain the hyperparameters decision which makes the research hard to duplicate and the compared signal controllers do not include more advanced controllers such as Max-pressure. 
	This paper will fill the gap by investigating the impact of several key hyperparameters in the deep reinforcement learnig, especially Deep Q-Network (DQN), to optimize traffic signal control algorithms with traffic incident occurance. This will provide practical guidance for researchers and enable implementations of deep reinforcement learning signal control algorithms to reduce impacts of incidents in transportation networks.  
	6.3 Incident Generation 
	We have developed an incident generation module within the open-source microsimulation platform, SUMO, to expose the machine learning controller to situations involving traffic incidents within the network. This approach creates relevant experiences for the AI controller to learn from and enhance its decision-making process regarding traffic phase selection. To the best of our knowledge, this is the first instance of incorporating the incident concept into SUMO. 
	In our simulation, we consider both single-vehicle and multiple-vehicle incidents. We represent the number of vehicles involved by using a single vehicle in SUMO with varying lengths, assuming each vehicle measures 5 meters in length with an additional 2.5-meter gap between stopped vehicles. For example, a two-vehicle incident would occupy 15 meters of lane space. 
	The incident generation module randomly selects a lane connecting two intersections to emulate the coordination impact between traffic controllers. In our scenario, each identical intersection features two straight movement lanes and one left-turn lane. We present two potential incident locations: on the straight movement lane or the left-turn lane. To simplify the learning process and minimize the risk of gridlock, we restrict incident locations to the straight movement lanes. 
	The incident vehicle's route is generated randomly, adhering to the requirement that it passes through at least two intersections. This ensures that the incident affects multiple intersections rather than just one. Our simulation schedules the incident randomly during the second hour of the three-hour simulation period, allowing most vehicles to complete their trips. Incident durations are assumed to be either 15 or 30 minutes. 
	Additionally, we incorporate emergency service vehicles into the incident generation module to simulate the rescue process impact. Representing an abstraction of multiple service vehicles, the emergency vehicle varies in length from 22.5 to 45 meters. It is generated 5 minutes after an incident is detected and travels from a random origin, stopping next to the incident location until the incident vehicle moves. 
	Under these conditions, traffic flow is significantly affected by the incident, allowing us to observe the intersection controllers' responses. The Uniform traffic controller maintains its 
	fixed pattern and green phase duration, offering no response to the incident. In contrast, the Webster's traffic controller adjusts its phases to accommodate the new traffic pattern by either reducing or extending the current phase. The Max-pressure and DQN traffic controllers, with their acyclic phase selection capabilities, should theoretically perform better in such scenarios, as they can choose suitable phases in any given situation. 
	6.4 New State 
	Transportation networks can be significantly disrupted by the occurrence of incidents. One consequence is that vehicles behind the incident point may become stuck, regardless of the amount of green time allocated. Adaptive traffic controllers struggle to account for this feature to enhance their performance. To address this issue, we introduce a new state for the proposed DQN to further improve its capabilities. 
	The new state is defined as the queue that could potentially be reduced by allocating green time and monitoring vehicles that have not been able to move after experiencing green phases. This approach ensures that the queue information passed to the DQN model is more accurate. We apply this new state only to the DQN, as we have established in the previous chapter that it outperforms other traffic controllers in single intersection scenarios. In this chapter, our goal is to determine the extent of the DQN's p
	To implement the new state collection, information on each individual vehicle's location and the most recent phase is required. If a vehicle's location has not changed compared to the previous time step, and the vehicle has already experienced a green phase for its traveling direction, we can deduce that the vehicle is stuck in the system and will be removed from the queue calculation. 
	The DQN model employed in this chapter maintains the same structure as the one used in the previous chapter, including its action and reward system, as well as the incorporation of experience replay and target network. The DNN structure also remains similar, utilizing the ReLU activation function and fully connected hidden layers. However, the primary distinction lies in the increased number of hidden layers used in this chapter. This is due to the heightened complexity of corridor and grid networks with tr
	6.5 Simulation Settings 
	To demonstrate the performance of the DQN, we compare it with three other traffic signal controllers: Uniform, Webster's, and Max-pressure. Definitions and implementation details for each traffic signal controller can be found in the previous chapter, which focuses on single intersection scenarios. It is important to note that the new state definition is applied to both the DQN and Max-pressure controllers, as they both depend on queue information to adjust their phase choices. The simulation spans a three-
	6.5.1 Network 
	We employ two network configurations to assess the performance of non-learning traffic controllers and the DQN in scenarios involving incidents: a two-intersection corridor and a 2x2 grid network, illustrated in 
	We employ two network configurations to assess the performance of non-learning traffic controllers and the DQN in scenarios involving incidents: a two-intersection corridor and a 2x2 grid network, illustrated in 
	Figure 6.5-1
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	 and 
	Figure 6.5-2
	Figure 6.5-2

	, respectively. Each intersection in these network configurations is identical to the single intersection examined in the previous chapter.  

	 
	Figure
	Figure 6.5-1. Corridor with two intersections 
	 
	Figure
	Figure 6.5-2. 2x2 Grid Network 
	6.5.2 Demand 
	In the simulations, we will employ two distinct traffic demands, consisting of 4,000 and 6,000 vehicles, respectively. Although these demands are not overly heavy for the two networks in the absence of incidents, the network becomes congested when an incident takes place, presenting an opportunity for traffic controllers to adjust their phase selection and enhance network performance.  
	The presence of an incident in the network can lead to longer queues at one or more intersections compared to a situation without incidents. This can significantly diminish the network's performance, which can be improved by employing adaptive traffic controllers such as Webster's, Max-pressure, and a trained DQN. 
	 
	6.6 Hyperparameter Tuning 
	Drawing on our experience with hyperparameter tuning in the single intersection scenario, we have determined that the most crucial hyperparameters to adjust are the learning rate and discount factor. To minimize computing time, we have limited the hyperparameter tuning list to three values for each parameter. For the remaining parameters, we will use the hyperparameters obtained from the single intersection tuning. Furthermore, we have increased the number of hidden layers in the DNN from 3 to 6 to augment 
	Drawing on our experience with hyperparameter tuning in the single intersection scenario, we have determined that the most crucial hyperparameters to adjust are the learning rate and discount factor. To minimize computing time, we have limited the hyperparameter tuning list to three values for each parameter. For the remaining parameters, we will use the hyperparameters obtained from the single intersection tuning. Furthermore, we have increased the number of hidden layers in the DNN from 3 to 6 to augment 
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	 presents the parameters employed during the training process for the corridor and grid networks, as well as other non-tuning parameters used in the DQN. 

	Table 6.6-1. Parameters used in DQN controller for the corridor and grid network 
	Parameters 
	Parameters 
	Parameters 
	Parameters 
	Parameters 

	Value/Values 
	Value/Values 



	Learning Rate 
	Learning Rate 
	Learning Rate 
	Learning Rate 

	[0.0001, 0.00001, 0.001] 
	[0.0001, 0.00001, 0.001] 


	Discount Factor 
	Discount Factor 
	Discount Factor 

	[0.5, 0.7, 0.9] 
	[0.5, 0.7, 0.9] 


	TD Step 
	TD Step 
	TD Step 

	2 
	2 


	Number of Hidden Layers 
	Number of Hidden Layers 
	Number of Hidden Layers 

	6 
	6 


	Target Frequency 
	Target Frequency 
	Target Frequency 

	128 
	128 


	Green Duration 
	Green Duration 
	Green Duration 

	6 
	6 


	Episodes 
	Episodes 
	Episodes 

	5000 
	5000 


	Replay Buffer Size 
	Replay Buffer Size 
	Replay Buffer Size 

	40000 
	40000 


	Batch Size 
	Batch Size 
	Batch Size 

	128 
	128 


	Number of Nodes Per Hidden Layer 
	Number of Nodes Per Hidden Layer 
	Number of Nodes Per Hidden Layer 

	64 
	64 


	Activation Function 
	Activation Function 
	Activation Function 

	ReLU 
	ReLU 




	6.7 Results 
	6.7.1 Hyperparameter Tuning Results 
	Hyperparameter tuning is carried out for both the corridor and grid (2x2 intersections) networks with a higher traffic demand of 6,000 vehicles. 
	Hyperparameter tuning is carried out for both the corridor and grid (2x2 intersections) networks with a higher traffic demand of 6,000 vehicles. 
	Figure 6.7-1
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	 and 
	Figure 6.7-2
	Figure 6.7-2

	 consolidate the results of hyperparameter tuning for each controller into a single figure to facilitate a better understanding of each controller's performance after hyperparameter tuning, where 
	Figure 6.7-3
	Figure 6.7-3

	 and 
	Figure 6.7-4
	Figure 6.7-4

	 show the combined results. Appendix 11 to 14 provide a comprehensive list of hyperparameter tuning results for all four controllers. 

	It is important to note that the DQN's performance is not finalized, as we still need to train the model instead of directly applying the preliminary results from hyperparameter tuning. In contrast, the performance of the other three controllers is determined due to their non-learning properties. The rationale behind using the incident scenario to train the DQN is to expose the controller to experiences involving traffic interruptions caused by incidents, thereby enabling it to better adapt its actions for 
	 
	Figure
	Figure 6.7-1. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Separate Graph) 
	 
	Figure
	Figure 6.7-2. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Separate Graph) 
	 
	 
	Figure
	Figure 6.7-3. Hyperparameter tuning results for the corridor network with 6,000 vehicle demand and incident (Combined Graph) 
	 
	Figure
	Figure 6.7-4. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and incident (Combined Graph) 
	It is noticeable that the performance of the DQN across different hyperparameter combination settings is not as varied as seen in the single intersection hyperparameter tuning results. This is because we have already narrowed down the potential values to be included in the hyperparameter tuning process. Another observation is that, with proper hyperparameter settings, the performance of the best DQN model can be on par with Max-pressure even without being trained extensively. 
	To analyze the fact that traditional non-learning controllers struggle to handle varying traffic situations, such as networks with or without incidents even for the same traffic demand, we also conducted hyperparameter tuning for the 2x2 grid network with a 6,000-vehicle demand and no incidents in the network. 
	To analyze the fact that traditional non-learning controllers struggle to handle varying traffic situations, such as networks with or without incidents even for the same traffic demand, we also conducted hyperparameter tuning for the 2x2 grid network with a 6,000-vehicle demand and no incidents in the network. 
	Figure 6.7-5
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	 and 
	Figure 6.7-6
	Figure 6.7-6

	 display the hyperparameter tuning results, while Appendix 15 to 18 provide more detailed information on the results. 

	 
	Figure
	Figure 6.7-5. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Separate Graph) 
	 
	 
	Figure
	Figure 6.7-6. Hyperparameter tuning results for the 2x2 grid network with 6,000 vehicle demand and no incident (Combined Graph)  
	By comparing the best hyperparameter settings from all controllers, we can see that the learning model employs almost the same settings, with the only difference being the learning rate. However, the second-best results use the same settings in both incident and non-incident scenarios for the DQN. In contrast, non-learning controllers utilize entirely different settings to compensate for the varying traffic patterns in the two scenarios. 
	6.7.2 Controller Performance Comparison  
	Using the best hyperparameter tuning settings for all controllers, we can compare their performance at both the system and intersection levels. For the learning model, DQN, we need to train it to achieve convergence. However, for non-learning controllers, we can simply use the best hyperparameters to generate the results. Each controller will be simulated 32 times to obtain a range of results, overcoming the randomness effect of using just a single simulation to verify its performance. 
	Using the best hyperparameter tuning settings for all controllers, we can compare their performance at both the system and intersection levels. For the learning model, DQN, we need to train it to achieve convergence. However, for non-learning controllers, we can simply use the best hyperparameters to generate the results. Each controller will be simulated 32 times to obtain a range of results, overcoming the randomness effect of using just a single simulation to verify its performance. 
	Figure 6.7-7
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	 displays the system-level results, including the mean travel time of all vehicles in the network with incidents in the corridor network, while 
	Figure 6.7-8
	Figure 6.7-8

	 illustrates the intersection-level performance. 

	 
	Figure
	Figure 6.7-7. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 
	 
	Figure
	Figure 6.7-8. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in Corridor Network 
	Figure 6.7-9
	Figure 6.7-9
	Figure 6.7-9

	 and 
	Figure 6.7-10
	Figure 6.7-10

	 depict the same performance measurement for the 2x2 grid network but with the presence of incidents. 

	 
	Figure
	Figure 6.7-9. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 
	 
	Figure
	Figure 6.7-10. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and Incident in 2x2 Grid Network 
	In contrast to the corridor scenario, the incident causes a significant amount of delay in the grid network, which can be seen by the end period of the simulation, where the queue length does not return to 0 due to unfinished vehicles. This is expected, as we did not allocate extra time for the simulation but only allowed a 3-hour simulation for all situations. 
	Incidents in both networks cause the controller's performance to vary significantly, but the mean travel time clearly shows that the fine-tuned and trained DQN outperforms other controllers with the lowest mean travel time and the lowest standard deviation of mean travel time. 
	We also applied the model to the same demand without incidents in the network to see if the DQN controller can handle the situation for both incident and non-incident networks, even with the same training model. The logic behind this is that during the training process, the DQN controller also experiences the time when there is no incident in the network, as we only introduce the incident to the network for a certain amount of time out of the 3-hour simulation period. 
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	 to 
	Figure 6.7-14
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	 show the results when applying the incident model directly to the non-incident scenario with the same traffic demand for both networks, including corridor and grid networks. 

	 
	Figure
	Figure 6.7-11. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 
	 
	Figure
	Figure 6.7-12. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in Corridor Network 
	  
	Figure
	Figure 6.7-13. System Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 
	 
	 
	Figure
	Figure 6.7-14. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 6,000 Demand and No Incident in 2x2 Grid Network 
	It is evident that the DQN outperforms the other controllers by directly applying the incident model to the non-incident situation. 
	In addition to testing the same model in scenarios with and without incidents, we also apply the same model to cases with lower traffic demand. We reduce the demand by half, resulting in about 4,000 vehicle demand in the following simulations. 
	In addition to testing the same model in scenarios with and without incidents, we also apply the same model to cases with lower traffic demand. We reduce the demand by half, resulting in about 4,000 vehicle demand in the following simulations. 
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	 to 
	Figure 6.7-22
	Figure 6.7-22

	 display the performance of each traffic signal controller when applying its model from the 6,000-demand scenario with incidents to the 4,000-demand scenario, both with and without incidents. 

	 
	Figure
	Figure 6.7-15. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 
	 
	Figure
	Figure 6.7-16. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in Corridor Network 
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	Figure 6.7-17. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 
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	Figure 6.7-18. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in Corridor Network 
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	Figure 6.7-19. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 
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	Figure 6.7-20. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and Incident in 2x2 Grid Network 
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	Figure 6.7-21. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 
	 
	 
	Figure
	Figure 6.7-22. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network 
	In general, the application of the DQN model to scenarios with lower traffic volumes, both with and without incidents, demonstrates its notable performance advantage over non-learning models. A peculiar observation from the above figures emerges in the 4,000-demand incident grid network scenario, where direct application of the model encounters some issues toward the end of the simulation. This is likely due to the DQN model's limited exposure to scenarios where vehicles are cleared from the network followi
	To address this limitation, we conduct further training of the original model in a scenario with a traffic demand of 4,000 and an incident. 
	To address this limitation, we conduct further training of the original model in a scenario with a traffic demand of 4,000 and an incident. 
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	 and 
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	 showcase the results of this refined approach. The results shows that the DQN can be improved further by exposing it to enough training time. 

	 
	Figure
	Figure 6.7-23. System Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network (with further training) 
	 
	Figure
	Figure 6.7-24. Intersection Level Performance Comparison of DQN and other Non-learning Controllers with 4,000 Demand and No Incident in 2x2 Grid Network(with further training) 
	6.8 Conclusion 
	In conclusion, this chapter has presented a comprehensive comparative analysis between the DQN traffic signal controller and the traditional non-learning traffic signal controller 
	techniques under the influence of traffic incidents in the network. Through rigorous evaluation, it has been demonstrated that the DQN traffic signal controller significantly outperforms its non-learning counterparts. The ability of the DQN controller to adapt and learn from its environment, coupled with its capacity to handle unpredictable traffic situations, enables it to provide more efficient and effective traffic signal timings. 
	We employ two distinct network configurations, a 2-intersection corridor and a 2x2 grid network, to assess the performance of these controllers when confronted with traffic incidents. After fine-tuning hyperparameters and further training the DQN controller, we generate results for comparison. Additionally, we apply the model to a scenario without incidents to obtain similar comparative results, highlighting the superior performance of the DQN model. We also investigate lower demand scenarios both with and 
	The implementation of the DQN traffic signal controller has shown great promise in minimizing congestion, reducing travel time, and enhancing overall traffic flow in the presence of traffic incidents. By incorporating state-of-the-art machine learning techniques, the DQN traffic signal controller effectively manages traffic demands, mitigating the impact of incidents on urban mobility. As a result, this innovative approach offers substantial benefits to cities and urban planners by paving the way for a more
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	7.1 Summary 
	In recent years, reinforcement learning (RL) has emerged as a promising approach to optimizing traffic signal control. This technique involves enabling traffic signals to learn and adapt to real-time traffic conditions autonomously, resulting in reduced congestion, improved traffic flow, and enhanced road safety. Traditional traffic signal control methods, such as fixed-time and actuated systems, have shown limitations in handling dynamic traffic conditions. Reinforcement learning overcomes these limitation
	This dissertation examines the efficacy of the simplest reinforcement learning framework, Q-learning, integrated with deep neural networks for optimizing traffic signal control in various network configurations, both with and without traffic incidents. Chapter 2 presents an extensive literature review to assess the current state of research and implementation of reinforcement learning in traffic signal control optimization. Various reinforcement learning approaches have been investigated to enhance intersec
	In Chapter 3, the main focus is on addressing these two gaps by elucidating the concept of reinforcement learning, with an emphasis on Q-learning, which when combined with deep neural networks, results in the formation of a deep Q-network (DQN). The chapter not only highlights the benefits of DQN but also discusses its drawbacks and various modifications, such as the incorporation of target networks and experience replay, which can be employed to improve DQN performance. 
	Chapter 4 outlines the creation of an incident generation module within an open-source microsimulation platform, SUMO. This module assists in generating experiences for the DQN agent, enabling it to gather crucial information from simulations involving traffic incidents. Consequently, the agent learns to modify the traffic signal controller to minimize the network's incident impact. The developed module simplifies the effects of single or multiple vehicle occurrences into a single vehicle with varying lengt
	Chapter 5 carries out an in-depth hyperparameter tuning of the DQN within a single intersection simulation scenario. This chapter identifies the most significant hyperparameters in the DQN model, such as the learning rate and reward discount factor. An extensive computational process is undertaken to determine the optimal combination of hyperparameters for both learning (DQN) and non-learning traffic signal controllers (Max-pressure, Uniform, and Websters) within the single intersection scenario. Upon compl
	In Chapter 6, the DQN agent is introduced to a more complex environment, incorporating various network configurations (corridor and 2x2 grid network) and randomly generated incidents within the network. Utilizing the hyperparameter tuning results from the single intersection scenario, the range of potential values for the learning rate and discount factor is narrowed when tuning the corridor and 2x2 grid network DQN models. Experimental results reveal that the DQN outperforms non-learning controllers in bot
	7.2 Directions for Future Research 
	In future work, we plan to explore the application of more advanced reinforcement learning (RL) frameworks to optimize traffic signal control performance. By leveraging cutting-edge algorithms and techniques such as multi-agent RL, hierarchical RL, and deep RL, we aim to create a more efficient and adaptive traffic signal control system that can better handle complex urban environments. This will involve designing reward functions that capture various objectives, such as reducing congestion, minimizing trav
	In addition, we aim to focus on the practical implementation of reinforcement learning-based traffic signal control systems, bridging the gap between theoretical advancements and real-world applications. This will involve addressing challenges such as system integration, computational efficiency, and robustness to uncertainties, while ensuring that the system can be seamlessly integrated into existing traffic management infrastructures. Additionally, we plan to collaborate with local authorities, transporta
	technical feasibility, regulatory compliance, and public acceptance, we strive to deploy an effective reinforcement learning-based traffic signal control system that can contribute to more efficient, safe, and sustainable urban transportation networks. 
	Machine learning, as the driving force behind the future of technology, holds immense potential for revolutionizing traffic signal control systems. As urban centers continue to expand, the optimization of traffic flow has become increasingly critical to reduce congestion, fuel consumption, and emissions. Studying and implementing machine learning techniques in traffic signal control can lead to adaptive and intelligent systems that dynamically respond to real-time traffic conditions, enhancing overall effic
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	1
	:
	 
	SUMO Network Generation Script
	 

	The command below was run to generate the 4x4 grid network illustrated in this paper.  
	netgenerate --grid --grid.number=4 --grid.length=200 --default.lanenumber=2 --default.speed=20 --no-turnarounds=true --turn-lanes=1 --turn-lanes.length=100 --default-junction-type=traffic_light --grid.attach-length=200 --tls.yellow.time=3 --tls.left-green.time=12 --tls.allred.time = 2 --output-file=net.net.xml 
	Network generating parameters and their meanings: 
	--grid: grid network will be generated. SUMO also provides for other types of networks to be generated automatically, including spider and random networks.  
	--grid.length defines the length of each intersection leg in meters 
	--default.lanenumber defines the number of lanes for each approach 
	--default.speed defines the edge design speed in meters/second 
	--no-turnarounds defines whether to allow turn around for the left turn lane 
	--turn-lanes defines the number of left turn lanes 
	--turn-lanes.length defines the length of left turn lanes 
	--default-junction-type defines the intersections in the network are controlled by the pretimed traffic signals 
	--grid.attach-length defines the length of road attached to the fringe of intersections in the network 
	--tls.yellow.time defines the duration of yellow phase in seconds 
	--tls.left-green.time defines the protected left turn movement green time in seconds 
	--tls.allred.time defines the duration of all red phase in seconds 
	More options of calling NETGENERATE could be found in https://sumo.dlr.de/docs/netgenerate.html.  
	 
	 
	 

	Appendix 2: Developed Traffic Demand Generating S
	Appendix 2: Developed Traffic Demand Generating S
	cript
	 

	Traffic demand was prepared by calling python randomTrips.py -n net.net.xml -r random.rou.xml --fringe-factor=100000000 --period=0.5 -e 3600. 
	Where randomTrips.py is a Python script tool provided by SUMO. 
	-n net.net.xml defines the location of the network file.  
	-r defines the name of the output route file.  
	--fringe-factor defines the ratios of through and internal traffic demand in the network. An extremely large number is used here to eliminate the internal traffic demand in the network. 
	--period defines the 1/number of vehicles generated per second. 0.5 used here means two vehicles will be generated per second in the network.  
	-e defines the end simulation step of generating trips so here one hour traffic demand is generated. 
	 
	 
	 

	Appendix 3: 
	Appendix 3: 
	DQN 
	Hype
	rparameter Tuning Results for Single 
	Intersection Network
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Discount Factor 
	Discount Factor 

	Green Duration (seconds) 
	Green Duration (seconds) 

	Learnig Rate 
	Learnig Rate 

	Number of Hidden Layers 
	Number of Hidden Layers 

	Temporal Difference Steps 
	Temporal Difference Steps 

	Update Frequency 
	Update Frequency 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	64 
	64 

	54 
	54 

	29 
	29 


	2 
	2 
	2 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	64 
	64 

	55 
	55 

	31 
	31 


	3 
	3 
	3 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	128 
	128 

	56 
	56 

	37 
	37 


	4 
	4 
	4 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	64 
	64 

	56 
	56 

	34 
	34 


	5 
	5 
	5 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	128 
	128 

	57 
	57 

	40 
	40 


	6 
	6 
	6 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	128 
	128 

	57 
	57 

	36 
	36 


	7 
	7 
	7 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	128 
	128 

	57 
	57 

	32 
	32 


	8 
	8 
	8 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	128 
	128 

	57 
	57 

	37 
	37 


	9 
	9 
	9 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	64 
	64 

	57 
	57 

	33 
	33 


	10 
	10 
	10 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	128 
	128 

	57 
	57 

	36 
	36 


	11 
	11 
	11 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	64 
	64 

	57 
	57 

	35 
	35 


	12 
	12 
	12 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	64 
	64 

	58 
	58 

	40 
	40 


	13 
	13 
	13 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	128 
	128 

	58 
	58 

	39 
	39 


	14 
	14 
	14 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	64 
	64 

	58 
	58 

	39 
	39 


	15 
	15 
	15 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	128 
	128 

	58 
	58 

	40 
	40 


	16 
	16 
	16 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	128 
	128 

	58 
	58 

	35 
	35 


	17 
	17 
	17 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	64 
	64 

	59 
	59 

	40 
	40 


	18 
	18 
	18 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	128 
	128 

	59 
	59 

	43 
	43 


	19 
	19 
	19 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	128 
	128 

	59 
	59 

	32 
	32 


	20 
	20 
	20 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	128 
	128 

	59 
	59 

	37 
	37 


	21 
	21 
	21 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	64 
	64 

	60 
	60 

	42 
	42 


	22 
	22 
	22 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	64 
	64 

	60 
	60 

	33 
	33 


	23 
	23 
	23 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	128 
	128 

	60 
	60 

	39 
	39 


	24 
	24 
	24 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	64 
	64 

	61 
	61 

	46 
	46 




	25 
	25 
	25 
	25 
	25 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	64 
	64 

	61 
	61 

	46 
	46 


	26 
	26 
	26 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	64 
	64 

	61 
	61 

	46 
	46 


	27 
	27 
	27 

	0.5 
	0.5 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	64 
	64 

	61 
	61 

	48 
	48 


	28 
	28 
	28 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	128 
	128 

	61 
	61 

	43 
	43 


	29 
	29 
	29 

	0.5 
	0.5 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	128 
	128 

	63 
	63 

	52 
	52 


	30 
	30 
	30 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	64 
	64 

	64 
	64 

	38 
	38 


	31 
	31 
	31 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	128 
	128 

	65 
	65 

	51 
	51 


	32 
	32 
	32 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	64 
	64 

	66 
	66 

	35 
	35 


	33 
	33 
	33 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	64 
	64 

	66 
	66 

	43 
	43 


	34 
	34 
	34 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	128 
	128 

	67 
	67 

	61 
	61 


	35 
	35 
	35 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	128 
	128 

	69 
	69 

	41 
	41 


	36 
	36 
	36 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	64 
	64 

	71 
	71 

	57 
	57 


	37 
	37 
	37 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	128 
	128 

	72 
	72 

	69 
	69 


	38 
	38 
	38 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	64 
	64 

	72 
	72 

	71 
	71 


	39 
	39 
	39 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	64 
	64 

	72 
	72 

	69 
	69 


	40 
	40 
	40 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	64 
	64 

	72 
	72 

	45 
	45 


	41 
	41 
	41 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	128 
	128 

	73 
	73 

	70 
	70 


	42 
	42 
	42 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	64 
	64 

	73 
	73 

	72 
	72 


	43 
	43 
	43 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	128 
	128 

	73 
	73 

	56 
	56 


	44 
	44 
	44 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	128 
	128 

	73 
	73 

	67 
	67 


	45 
	45 
	45 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	128 
	128 

	73 
	73 

	73 
	73 


	46 
	46 
	46 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	64 
	64 

	74 
	74 

	71 
	71 


	47 
	47 
	47 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	128 
	128 

	74 
	74 

	75 
	75 


	48 
	48 
	48 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	128 
	128 

	75 
	75 

	56 
	56 


	49 
	49 
	49 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	128 
	128 

	76 
	76 

	79 
	79 


	50 
	50 
	50 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	64 
	64 

	76 
	76 

	78 
	78 


	51 
	51 
	51 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	128 
	128 

	76 
	76 

	78 
	78 


	52 
	52 
	52 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	64 
	64 

	76 
	76 

	48 
	48 


	53 
	53 
	53 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	128 
	128 

	76 
	76 

	79 
	79 


	54 
	54 
	54 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	128 
	128 

	76 
	76 

	80 
	80 


	55 
	55 
	55 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	128 
	128 

	77 
	77 

	79 
	79 




	56 
	56 
	56 
	56 
	56 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	64 
	64 

	77 
	77 

	81 
	81 


	57 
	57 
	57 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	128 
	128 

	77 
	77 

	81 
	81 


	58 
	58 
	58 

	0.5 
	0.5 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	64 
	64 

	78 
	78 

	82 
	82 


	59 
	59 
	59 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	128 
	128 

	78 
	78 

	82 
	82 


	60 
	60 
	60 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	128 
	128 

	78 
	78 

	81 
	81 


	61 
	61 
	61 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	64 
	64 

	78 
	78 

	80 
	80 


	62 
	62 
	62 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	64 
	64 

	78 
	78 

	81 
	81 


	63 
	63 
	63 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	64 
	64 

	78 
	78 

	81 
	81 


	64 
	64 
	64 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	64 
	64 

	78 
	78 

	81 
	81 


	65 
	65 
	65 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	64 
	64 

	78 
	78 

	82 
	82 


	66 
	66 
	66 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	128 
	128 

	78 
	78 

	82 
	82 


	67 
	67 
	67 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	64 
	64 

	79 
	79 

	83 
	83 


	68 
	68 
	68 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	128 
	128 

	79 
	79 

	82 
	82 


	69 
	69 
	69 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	64 
	64 

	79 
	79 

	74 
	74 


	70 
	70 
	70 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	64 
	64 

	80 
	80 

	84 
	84 


	71 
	71 
	71 

	0.5 
	0.5 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	128 
	128 

	80 
	80 

	86 
	86 


	72 
	72 
	72 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	128 
	128 

	80 
	80 

	82 
	82 


	73 
	73 
	73 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	64 
	64 

	80 
	80 

	84 
	84 


	74 
	74 
	74 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	64 
	64 

	81 
	81 

	87 
	87 


	75 
	75 
	75 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	64 
	64 

	81 
	81 

	74 
	74 


	76 
	76 
	76 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	64 
	64 

	81 
	81 

	79 
	79 


	77 
	77 
	77 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	128 
	128 

	81 
	81 

	81 
	81 


	78 
	78 
	78 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	128 
	128 

	81 
	81 

	85 
	85 


	79 
	79 
	79 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	64 
	64 

	82 
	82 

	88 
	88 


	80 
	80 
	80 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	64 
	64 

	82 
	82 

	86 
	86 


	81 
	81 
	81 

	0.9 
	0.9 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	128 
	128 

	82 
	82 

	88 
	88 


	82 
	82 
	82 

	0.5 
	0.5 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	128 
	128 

	84 
	84 

	87 
	87 


	83 
	83 
	83 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	128 
	128 

	85 
	85 

	87 
	87 


	84 
	84 
	84 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	64 
	64 

	85 
	85 

	92 
	92 




	85 
	85 
	85 
	85 
	85 

	0.9 
	0.9 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	64 
	64 

	87 
	87 

	90 
	90 


	86 
	86 
	86 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	128 
	128 

	90 
	90 

	138 
	138 


	87 
	87 
	87 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	64 
	64 

	92 
	92 

	81 
	81 


	88 
	88 
	88 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	64 
	64 

	93 
	93 

	106 
	106 


	89 
	89 
	89 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	128 
	128 

	94 
	94 

	96 
	96 


	90 
	90 
	90 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	128 
	128 

	98 
	98 

	204 
	204 


	91 
	91 
	91 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	128 
	128 

	99 
	99 

	117 
	117 


	92 
	92 
	92 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	128 
	128 

	101 
	101 

	100 
	100 


	93 
	93 
	93 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	64 
	64 

	103 
	103 

	112 
	112 


	94 
	94 
	94 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	128 
	128 

	104 
	104 

	133 
	133 


	95 
	95 
	95 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	128 
	128 

	105 
	105 

	128 
	128 


	96 
	96 
	96 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	64 
	64 

	107 
	107 

	141 
	141 


	97 
	97 
	97 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	128 
	128 

	115 
	115 

	166 
	166 


	98 
	98 
	98 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	64 
	64 

	129 
	129 

	219 
	219 


	99 
	99 
	99 

	0.9 
	0.9 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	128 
	128 

	131 
	131 

	181 
	181 


	100 
	100 
	100 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	128 
	128 

	131 
	131 

	366 
	366 


	101 
	101 
	101 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	128 
	128 

	137 
	137 

	115 
	115 


	102 
	102 
	102 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	128 
	128 

	144 
	144 

	270 
	270 


	103 
	103 
	103 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	128 
	128 

	150 
	150 

	282 
	282 


	104 
	104 
	104 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	128 
	128 

	152 
	152 

	444 
	444 


	105 
	105 
	105 

	0.9 
	0.9 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	64 
	64 

	156 
	156 

	141 
	141 


	106 
	106 
	106 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	128 
	128 

	156 
	156 

	471 
	471 


	107 
	107 
	107 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	128 
	128 

	160 
	160 

	180 
	180 


	108 
	108 
	108 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	64 
	64 

	173 
	173 

	177 
	177 


	109 
	109 
	109 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	64 
	64 

	190 
	190 

	566 
	566 


	110 
	110 
	110 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	128 
	128 

	195 
	195 

	139 
	139 


	111 
	111 
	111 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	2 
	2 

	64 
	64 

	207 
	207 

	351 
	351 


	112 
	112 
	112 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	128 
	128 

	213 
	213 

	696 
	696 


	113 
	113 
	113 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	64 
	64 

	221 
	221 

	623 
	623 


	114 
	114 
	114 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	64 
	64 

	224 
	224 

	434 
	434 




	115 
	115 
	115 
	115 
	115 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	64 
	64 

	234 
	234 

	165 
	165 


	116 
	116 
	116 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	128 
	128 

	268 
	268 

	185 
	185 


	117 
	117 
	117 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	128 
	128 

	274 
	274 

	353 
	353 


	118 
	118 
	118 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	64 
	64 

	284 
	284 

	227 
	227 


	119 
	119 
	119 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	128 
	128 

	284 
	284 

	232 
	232 


	120 
	120 
	120 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	6 
	6 

	2 
	2 

	128 
	128 

	294 
	294 

	800 
	800 


	121 
	121 
	121 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	128 
	128 

	305 
	305 

	206 
	206 


	122 
	122 
	122 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	128 
	128 

	307 
	307 

	260 
	260 


	123 
	123 
	123 

	0.99 
	0.99 

	6 
	6 

	0.0001 
	0.0001 

	3 
	3 

	1 
	1 

	64 
	64 

	308 
	308 

	568 
	568 


	124 
	124 
	124 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	64 
	64 

	341 
	341 

	862 
	862 


	125 
	125 
	125 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	128 
	128 

	341 
	341 

	1165 
	1165 


	126 
	126 
	126 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	128 
	128 

	344 
	344 

	1054 
	1054 


	127 
	127 
	127 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	64 
	64 

	347 
	347 

	1110 
	1110 


	128 
	128 
	128 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	128 
	128 

	354 
	354 

	1174 
	1174 


	129 
	129 
	129 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	64 
	64 

	361 
	361 

	289 
	289 


	130 
	130 
	130 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	64 
	64 

	364 
	364 

	1156 
	1156 


	131 
	131 
	131 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	64 
	64 

	369 
	369 

	1188 
	1188 


	132 
	132 
	132 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	128 
	128 

	370 
	370 

	1191 
	1191 


	133 
	133 
	133 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	64 
	64 

	391 
	391 

	1017 
	1017 


	134 
	134 
	134 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	64 
	64 

	400 
	400 

	1076 
	1076 


	135 
	135 
	135 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	1 
	1 

	64 
	64 

	403 
	403 

	1243 
	1243 


	136 
	136 
	136 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	3 
	3 

	2 
	2 

	128 
	128 

	424 
	424 

	1029 
	1029 


	137 
	137 
	137 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	3 
	3 

	1 
	1 

	64 
	64 

	496 
	496 

	931 
	931 


	138 
	138 
	138 

	0.99 
	0.99 

	12 
	12 

	0.0001 
	0.0001 

	6 
	6 

	1 
	1 

	64 
	64 

	504 
	504 

	1216 
	1216 


	139 
	139 
	139 

	0.99 
	0.99 

	12 
	12 

	1.00E-05 
	1.00E-05 

	3 
	3 

	2 
	2 

	64 
	64 

	655 
	655 

	1117 
	1117 


	140 
	140 
	140 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	128 
	128 

	728 
	728 

	1536 
	1536 


	141 
	141 
	141 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	2 
	2 

	64 
	64 

	1104 
	1104 

	1554 
	1554 


	142 
	142 
	142 

	0.99 
	0.99 

	6 
	6 

	0.001 
	0.001 

	6 
	6 

	1 
	1 

	64 
	64 

	1129 
	1129 

	2038 
	2038 




	143 
	143 
	143 
	143 
	143 

	0.99 
	0.99 

	12 
	12 

	0.001 
	0.001 

	6 
	6 

	2 
	2 

	64 
	64 

	1184 
	1184 

	1985 
	1985 


	144 
	144 
	144 

	0.99 
	0.99 

	6 
	6 

	1.00E-05 
	1.00E-05 

	6 
	6 

	1 
	1 

	64 
	64 

	1263 
	1263 

	2072 
	2072 




	 
	 
	 
	 

	Appendix 4: Max
	Appendix 4: Max
	-
	pressure Hyperparameter Tuning Results for 
	Single Intersection Network
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration 
	Green Duration 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	7 
	7 

	56 
	56 

	22 
	22 


	2 
	2 
	2 

	9 
	9 

	58 
	58 

	22 
	22 


	3 
	3 
	3 

	8 
	8 

	58 
	58 

	24 
	24 


	4 
	4 
	4 

	12 
	12 

	59 
	59 

	25 
	25 


	5 
	5 
	5 

	11 
	11 

	60 
	60 

	25 
	25 


	6 
	6 
	6 

	10 
	10 

	60 
	60 

	26 
	26 


	7 
	7 
	7 

	6 
	6 

	59 
	59 

	29 
	29 


	8 
	8 
	8 

	5 
	5 

	61 
	61 

	34 
	34 


	9 
	9 
	9 

	13 
	13 

	61 
	61 

	35 
	35 


	10 
	10 
	10 

	14 
	14 

	61 
	61 

	36 
	36 


	11 
	11 
	11 

	16 
	16 

	63 
	63 

	39 
	39 


	12 
	12 
	12 

	15 
	15 

	66 
	66 

	49 
	49 


	13 
	13 
	13 

	18 
	18 

	70 
	70 

	58 
	58 


	14 
	14 
	14 

	17 
	17 

	71 
	71 

	58 
	58 


	15 
	15 
	15 

	20 
	20 

	75 
	75 

	69 
	69 


	16 
	16 
	16 

	19 
	19 

	76 
	76 

	71 
	71 


	17 
	17 
	17 

	21 
	21 

	79 
	79 

	77 
	77 


	18 
	18 
	18 

	22 
	22 

	81 
	81 

	81 
	81 


	19 
	19 
	19 

	24 
	24 

	82 
	82 

	82 
	82 


	20 
	20 
	20 

	23 
	23 

	84 
	84 

	85 
	85 


	21 
	21 
	21 

	25 
	25 

	84 
	84 

	87 
	87 




	 
	 
	 
	 

	Appendix 5: Uniform Hyperparameter Tuning Results for Single 
	Appendix 5: Uniform Hyperparameter Tuning Results for Single 
	Intersection Network
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration (seconds) 
	Green Duration (seconds) 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	21 
	21 

	81 
	81 

	39 
	39 


	2 
	2 
	2 

	22 
	22 

	81 
	81 

	39 
	39 


	3 
	3 
	3 

	23 
	23 

	82 
	82 

	39 
	39 


	4 
	4 
	4 

	25 
	25 

	84 
	84 

	40 
	40 


	5 
	5 
	5 

	24 
	24 

	84 
	84 

	42 
	42 


	6 
	6 
	6 

	16 
	16 

	82 
	82 

	50 
	50 


	7 
	7 
	7 

	19 
	19 

	84 
	84 

	48 
	48 


	8 
	8 
	8 

	17 
	17 

	84 
	84 

	52 
	52 


	9 
	9 
	9 

	18 
	18 

	85 
	85 

	53 
	53 


	10 
	10 
	10 

	20 
	20 

	86 
	86 

	52 
	52 


	11 
	11 
	11 

	14 
	14 

	84 
	84 

	55 
	55 


	12 
	12 
	12 

	15 
	15 

	89 
	89 

	62 
	62 


	13 
	13 
	13 

	12 
	12 

	95 
	95 

	75 
	75 


	14 
	14 
	14 

	13 
	13 

	96 
	96 

	74 
	74 


	15 
	15 
	15 

	11 
	11 

	106 
	106 

	87 
	87 


	16 
	16 
	16 

	10 
	10 

	123 
	123 

	106 
	106 


	17 
	17 
	17 

	9 
	9 

	125 
	125 

	105 
	105 


	18 
	18 
	18 

	8 
	8 

	164 
	164 

	141 
	141 


	19 
	19 
	19 

	7 
	7 

	170 
	170 

	144 
	144 


	20 
	20 
	20 

	6 
	6 

	202 
	202 

	168 
	168 


	21 
	21 
	21 

	5 
	5 

	250 
	250 

	203 
	203 




	 
	 
	 
	 

	Appendix 6: Webster’s Hyperparameter Tuning Results for
	Appendix 6: Webster’s Hyperparameter Tuning Results for
	 
	Single 
	Intersection Network
	 

	     
	ID 
	ID 
	ID 
	ID 
	ID 

	Max Cycle Length (seconds) 
	Max Cycle Length (seconds) 

	Min Cycle Length (seconds) 
	Min Cycle Length (seconds) 

	Time Interval (seconds) 
	Time Interval (seconds) 

	Satuation Flow Rate 
	Satuation Flow Rate 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	200 
	200 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	74 
	74 

	42 
	42 


	2 
	2 
	2 

	180 
	180 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	75 
	75 

	44 
	44 


	3 
	3 
	3 

	160 
	160 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	75 
	75 

	45 
	45 


	4 
	4 
	4 

	160 
	160 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	75 
	75 

	48 
	48 


	5 
	5 
	5 

	200 
	200 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	74 
	74 

	49 
	49 


	6 
	6 
	6 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	75 
	75 

	48 
	48 


	7 
	7 
	7 

	180 
	180 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	76 
	76 

	49 
	49 


	8 
	8 
	8 

	160 
	160 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	75 
	75 

	51 
	51 


	9 
	9 
	9 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	76 
	76 

	51 
	51 


	10 
	10 
	10 

	200 
	200 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	76 
	76 

	51 
	51 


	11 
	11 
	11 

	160 
	160 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	76 
	76 

	52 
	52 


	12 
	12 
	12 

	180 
	180 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	75 
	75 

	53 
	53 


	13 
	13 
	13 

	160 
	160 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	80 
	80 

	49 
	49 


	14 
	14 
	14 

	180 
	180 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	80 
	80 

	49 
	49 


	15 
	15 
	15 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	77 
	77 

	53 
	53 


	16 
	16 
	16 

	160 
	160 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	78 
	78 

	52 
	52 


	17 
	17 
	17 

	180 
	180 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	76 
	76 

	54 
	54 


	18 
	18 
	18 

	160 
	160 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	76 
	76 

	55 
	55 


	19 
	19 
	19 

	160 
	160 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	80 
	80 

	51 
	51 


	20 
	20 
	20 

	160 
	160 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	81 
	81 

	50 
	50 


	21 
	21 
	21 

	200 
	200 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	77 
	77 

	54 
	54 


	22 
	22 
	22 

	160 
	160 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	78 
	78 

	54 
	54 


	23 
	23 
	23 

	160 
	160 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	81 
	81 

	52 
	52 


	24 
	24 
	24 

	180 
	180 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	77 
	77 

	56 
	56 


	25 
	25 
	25 

	180 
	180 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	78 
	78 

	55 
	55 


	26 
	26 
	26 

	200 
	200 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	83 
	83 

	50 
	50 




	27 
	27 
	27 
	27 
	27 

	160 
	160 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	80 
	80 

	54 
	54 


	28 
	28 
	28 

	180 
	180 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	79 
	79 

	55 
	55 


	29 
	29 
	29 

	180 
	180 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	83 
	83 

	51 
	51 


	30 
	30 
	30 

	200 
	200 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	83 
	83 

	52 
	52 


	31 
	31 
	31 

	200 
	200 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	82 
	82 

	53 
	53 


	32 
	32 
	32 

	200 
	200 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	79 
	79 

	56 
	56 


	33 
	33 
	33 

	200 
	200 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	78 
	78 

	58 
	58 


	34 
	34 
	34 

	200 
	200 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	84 
	84 

	52 
	52 


	35 
	35 
	35 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	79 
	79 

	58 
	58 


	36 
	36 
	36 

	180 
	180 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	82 
	82 

	55 
	55 


	37 
	37 
	37 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	79 
	79 

	58 
	58 


	38 
	38 
	38 

	180 
	180 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	78 
	78 

	59 
	59 


	39 
	39 
	39 

	180 
	180 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	84 
	84 

	53 
	53 


	40 
	40 
	40 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	80 
	80 

	58 
	58 


	41 
	41 
	41 

	160 
	160 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	81 
	81 

	58 
	58 


	42 
	42 
	42 

	180 
	180 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	82 
	82 

	57 
	57 


	43 
	43 
	43 

	200 
	200 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	84 
	84 

	55 
	55 


	44 
	44 
	44 

	180 
	180 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	84 
	84 

	56 
	56 


	45 
	45 
	45 

	200 
	200 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	78 
	78 

	62 
	62 


	46 
	46 
	46 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	83 
	83 

	59 
	59 


	47 
	47 
	47 

	160 
	160 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	81 
	81 

	62 
	62 


	48 
	48 
	48 

	200 
	200 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	83 
	83 

	60 
	60 


	49 
	49 
	49 

	180 
	180 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	81 
	81 

	63 
	63 


	50 
	50 
	50 

	180 
	180 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	85 
	85 

	60 
	60 


	51 
	51 
	51 

	200 
	200 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	81 
	81 

	64 
	64 


	52 
	52 
	52 

	160 
	160 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	85 
	85 

	61 
	61 


	53 
	53 
	53 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	84 
	84 

	62 
	62 


	54 
	54 
	54 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	85 
	85 

	62 
	62 


	55 
	55 
	55 

	200 
	200 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	81 
	81 

	66 
	66 


	56 
	56 
	56 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	86 
	86 

	63 
	63 


	57 
	57 
	57 

	200 
	200 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	87 
	87 

	62 
	62 


	58 
	58 
	58 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	86 
	86 

	64 
	64 


	59 
	59 
	59 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	84 
	84 

	68 
	68 




	60 
	60 
	60 
	60 
	60 

	160 
	160 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	83 
	83 

	70 
	70 


	61 
	61 
	61 

	200 
	200 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	85 
	85 

	69 
	69 


	62 
	62 
	62 

	160 
	160 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	85 
	85 

	70 
	70 


	63 
	63 
	63 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	88 
	88 

	67 
	67 


	64 
	64 
	64 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	85 
	85 

	72 
	72 


	65 
	65 
	65 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	85 
	85 

	73 
	73 


	66 
	66 
	66 

	180 
	180 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	87 
	87 

	72 
	72 


	67 
	67 
	67 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	87 
	87 

	74 
	74 


	68 
	68 
	68 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	88 
	88 

	75 
	75 


	69 
	69 
	69 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	87 
	87 

	76 
	76 


	70 
	70 
	70 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	90 
	90 

	74 
	74 


	71 
	71 
	71 

	160 
	160 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	89 
	89 

	80 
	80 


	72 
	72 
	72 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	92 
	92 

	77 
	77 


	73 
	73 
	73 

	200 
	200 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	90 
	90 

	81 
	81 


	74 
	74 
	74 

	180 
	180 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	91 
	91 

	82 
	82 


	75 
	75 
	75 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	94 
	94 

	81 
	81 


	76 
	76 
	76 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	92 
	92 

	86 
	86 


	77 
	77 
	77 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	94 
	94 

	88 
	88 


	78 
	78 
	78 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	95 
	95 

	88 
	88 


	79 
	79 
	79 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	94 
	94 

	90 
	90 


	80 
	80 
	80 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	95 
	95 

	92 
	92 


	81 
	81 
	81 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	97 
	97 

	94 
	94 




	 
	 
	 
	 

	Appendix 7: 
	Appendix 7: 
	Hyperparameter Tuning Results: DQN in Corridor 
	Network with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	-batch 
	-batch 

	Discount Factor 
	Discount Factor 

	Green Duration 
	Green Duration 

	Learning Rate 
	Learning Rate 

	-lre 
	-lre 

	Number of Hidden Layers 
	Number of Hidden Layers 

	-nreplay 
	-nreplay 

	Temporal Difference Steps 
	Temporal Difference Steps 

	Update Frequency 
	Update Frequency 

	-updates 
	-updates 

	Mean  
	Mean  
	(seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	128 
	128 

	0.1 
	0.1 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	68 
	68 

	55 
	55 


	2 
	2 
	2 

	128 
	128 

	0.1 
	0.1 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	67 
	67 

	86 
	86 


	3 
	3 
	3 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	66 
	66 

	90 
	90 


	4 
	4 
	4 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	73 
	73 

	90 
	90 


	5 
	5 
	5 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	77 
	77 

	96 
	96 


	6 
	6 
	6 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	70 
	70 

	107 
	107 


	7 
	7 
	7 

	128 
	128 

	0.1 
	0.1 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	71 
	71 

	111 
	111 


	8 
	8 
	8 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	72 
	72 

	116 
	116 


	9 
	9 
	9 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	72 
	72 

	117 
	117 


	10 
	10 
	10 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	0.001 
	0.001 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	80 
	80 

	118 
	118 


	11 
	11 
	11 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	76 
	76 

	129 
	129 


	12 
	12 
	12 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	800000 
	800000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	79 
	79 

	139 
	139 




	          
	  
	Appendix 8: 
	Appendix 8: 
	Hyperparameter Tuning Results: M
	ax
	-
	press
	ure in 
	Corridor Network with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration 
	Green Duration 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	5 
	5 

	66 
	66 

	50 
	50 


	2 
	2 
	2 

	23 
	23 

	72 
	72 

	73 
	73 


	3 
	3 
	3 

	18 
	18 

	71 
	71 

	87 
	87 


	4 
	4 
	4 

	17 
	17 

	73 
	73 

	93 
	93 


	5 
	5 
	5 

	9 
	9 

	76 
	76 

	93 
	93 


	6 
	6 
	6 

	22 
	22 

	74 
	74 

	97 
	97 


	7 
	7 
	7 

	21 
	21 

	75 
	75 

	97 
	97 


	8 
	8 
	8 

	11 
	11 

	76 
	76 

	102 
	102 


	9 
	9 
	9 

	19 
	19 

	78 
	78 

	108 
	108 


	10 
	10 
	10 

	14 
	14 

	78 
	78 

	112 
	112 


	11 
	11 
	11 

	20 
	20 

	80 
	80 

	110 
	110 


	12 
	12 
	12 

	16 
	16 

	77 
	77 

	116 
	116 


	13 
	13 
	13 

	7 
	7 

	78 
	78 

	117 
	117 


	14 
	14 
	14 

	15 
	15 

	79 
	79 

	116 
	116 


	15 
	15 
	15 

	12 
	12 

	80 
	80 

	116 
	116 


	16 
	16 
	16 

	13 
	13 

	81 
	81 

	118 
	118 


	17 
	17 
	17 

	25 
	25 

	82 
	82 

	118 
	118 


	18 
	18 
	18 

	10 
	10 

	82 
	82 

	122 
	122 


	19 
	19 
	19 

	8 
	8 

	81 
	81 

	126 
	126 


	20 
	20 
	20 

	6 
	6 

	82 
	82 

	135 
	135 


	21 
	21 
	21 

	24 
	24 

	85 
	85 

	135 
	135 




	 
	  
	Appendix 9: Hyperparameter Tuning Results: Uniform
	Appendix 9: Hyperparameter Tuning Results: Uniform
	 
	in Corridor 
	Network with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration (seconds) 
	Green Duration (seconds) 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	14 
	14 

	91 
	91 

	92 
	92 


	2 
	2 
	2 

	24 
	24 

	99 
	99 

	84 
	84 


	3 
	3 
	3 

	17 
	17 

	98 
	98 

	106 
	106 


	4 
	4 
	4 

	5 
	5 

	109 
	109 

	96 
	96 


	5 
	5 
	5 

	16 
	16 

	96 
	96 

	110 
	110 


	6 
	6 
	6 

	13 
	13 

	98 
	98 

	124 
	124 


	7 
	7 
	7 

	18 
	18 

	103 
	103 

	120 
	120 


	8 
	8 
	8 

	9 
	9 

	99 
	99 

	125 
	125 


	9 
	9 
	9 

	11 
	11 

	98 
	98 

	127 
	127 


	10 
	10 
	10 

	23 
	23 

	106 
	106 

	119 
	119 


	11 
	11 
	11 

	10 
	10 

	99 
	99 

	127 
	127 


	12 
	12 
	12 

	15 
	15 

	104 
	104 

	134 
	134 


	13 
	13 
	13 

	20 
	20 

	107 
	107 

	134 
	134 


	14 
	14 
	14 

	22 
	22 

	112 
	112 

	146 
	146 


	15 
	15 
	15 

	25 
	25 

	115 
	115 

	143 
	143 


	16 
	16 
	16 

	12 
	12 

	105 
	105 

	154 
	154 


	17 
	17 
	17 

	19 
	19 

	112 
	112 

	152 
	152 


	18 
	18 
	18 

	7 
	7 

	113 
	113 

	157 
	157 


	19 
	19 
	19 

	8 
	8 

	112 
	112 

	158 
	158 


	20 
	20 
	20 

	21 
	21 

	116 
	116 

	159 
	159 


	21 
	21 
	21 

	6 
	6 

	125 
	125 

	161 
	161 




	 
	  
	Appendix 10: Hyperparameter Tuning Results: Web
	Appendix 10: Hyperparameter Tuning Results: Web
	ster’s
	 
	in 
	Corridor Network with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Max Cycle Length (seconds) 
	Max Cycle Length (seconds) 

	Min Cycle Length (seconds) 
	Min Cycle Length (seconds) 

	Time Interval (seconds) 
	Time Interval (seconds) 

	Satuation Flow Rate 
	Satuation Flow Rate 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	77 
	77 

	71 
	71 


	2 
	2 
	2 

	160 
	160 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	87 
	87 

	66 
	66 


	3 
	3 
	3 

	160 
	160 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	78 
	78 

	83 
	83 


	4 
	4 
	4 

	180 
	180 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	81 
	81 

	88 
	88 


	5 
	5 
	5 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	83 
	83 

	87 
	87 


	6 
	6 
	6 

	160 
	160 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	83 
	83 

	91 
	91 


	7 
	7 
	7 

	180 
	180 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	85 
	85 

	94 
	94 


	8 
	8 
	8 

	200 
	200 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	81 
	81 

	100 
	100 


	9 
	9 
	9 

	180 
	180 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	82 
	82 

	100 
	100 


	10 
	10 
	10 

	200 
	200 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	82 
	82 

	101 
	101 


	11 
	11 
	11 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	85 
	85 

	101 
	101 


	12 
	12 
	12 

	180 
	180 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	83 
	83 

	103 
	103 


	13 
	13 
	13 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	86 
	86 

	102 
	102 


	14 
	14 
	14 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	84 
	84 

	105 
	105 


	15 
	15 
	15 

	180 
	180 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	87 
	87 

	103 
	103 


	16 
	16 
	16 

	200 
	200 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	83 
	83 

	107 
	107 


	17 
	17 
	17 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	86 
	86 

	104 
	104 


	18 
	18 
	18 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	87 
	87 

	103 
	103 


	19 
	19 
	19 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	86 
	86 

	105 
	105 


	20 
	20 
	20 

	160 
	160 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	86 
	86 

	107 
	107 


	21 
	21 
	21 

	200 
	200 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	86 
	86 

	107 
	107 


	22 
	22 
	22 

	200 
	200 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	88 
	88 

	106 
	106 


	23 
	23 
	23 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	88 
	88 

	110 
	110 


	24 
	24 
	24 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	86 
	86 

	113 
	113 


	25 
	25 
	25 

	200 
	200 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	86 
	86 

	115 
	115 


	26 
	26 
	26 

	200 
	200 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	87 
	87 

	114 
	114 


	27 
	27 
	27 

	160 
	160 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	88 
	88 

	114 
	114 


	28 
	28 
	28 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	86 
	86 

	116 
	116 




	29 
	29 
	29 
	29 
	29 

	200 
	200 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	86 
	86 

	116 
	116 


	30 
	30 
	30 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	86 
	86 

	117 
	117 


	31 
	31 
	31 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	89 
	89 

	114 
	114 


	32 
	32 
	32 

	180 
	180 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	88 
	88 

	115 
	115 


	33 
	33 
	33 

	160 
	160 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	91 
	91 

	114 
	114 


	34 
	34 
	34 

	180 
	180 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	89 
	89 

	116 
	116 


	35 
	35 
	35 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	87 
	87 

	119 
	119 


	36 
	36 
	36 

	180 
	180 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	88 
	88 

	120 
	120 


	37 
	37 
	37 

	160 
	160 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	88 
	88 

	121 
	121 


	38 
	38 
	38 

	180 
	180 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	90 
	90 

	120 
	120 


	39 
	39 
	39 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	87 
	87 

	123 
	123 


	40 
	40 
	40 

	180 
	180 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	90 
	90 

	121 
	121 


	41 
	41 
	41 

	200 
	200 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	89 
	89 

	122 
	122 


	42 
	42 
	42 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	89 
	89 

	123 
	123 


	43 
	43 
	43 

	160 
	160 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	89 
	89 

	124 
	124 


	44 
	44 
	44 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	89 
	89 

	124 
	124 


	45 
	45 
	45 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	88 
	88 

	126 
	126 


	46 
	46 
	46 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	93 
	93 

	121 
	121 


	47 
	47 
	47 

	160 
	160 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	89 
	89 

	126 
	126 


	48 
	48 
	48 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	90 
	90 

	125 
	125 


	49 
	49 
	49 

	200 
	200 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	90 
	90 

	125 
	125 


	50 
	50 
	50 

	180 
	180 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	90 
	90 

	126 
	126 


	51 
	51 
	51 

	180 
	180 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	90 
	90 

	126 
	126 


	52 
	52 
	52 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	89 
	89 

	127 
	127 


	53 
	53 
	53 

	200 
	200 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	90 
	90 

	126 
	126 


	54 
	54 
	54 

	160 
	160 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	92 
	92 

	126 
	126 


	55 
	55 
	55 

	200 
	200 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	91 
	91 

	127 
	127 


	56 
	56 
	56 

	200 
	200 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	91 
	91 

	127 
	127 


	57 
	57 
	57 

	160 
	160 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	91 
	91 

	129 
	129 


	58 
	58 
	58 

	180 
	180 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	91 
	91 

	129 
	129 


	59 
	59 
	59 

	200 
	200 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	89 
	89 

	131 
	131 


	60 
	60 
	60 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	89 
	89 

	132 
	132 


	61 
	61 
	61 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	89 
	89 

	133 
	133 




	62 
	62 
	62 
	62 
	62 

	180 
	180 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	92 
	92 

	130 
	130 


	63 
	63 
	63 

	160 
	160 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	91 
	91 

	132 
	132 


	64 
	64 
	64 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	90 
	90 

	133 
	133 


	65 
	65 
	65 

	180 
	180 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	91 
	91 

	133 
	133 


	66 
	66 
	66 

	200 
	200 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	95 
	95 

	130 
	130 


	67 
	67 
	67 

	160 
	160 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	93 
	93 

	133 
	133 


	68 
	68 
	68 

	160 
	160 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	95 
	95 

	134 
	134 


	69 
	69 
	69 

	200 
	200 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	91 
	91 

	138 
	138 


	70 
	70 
	70 

	160 
	160 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	94 
	94 

	137 
	137 


	71 
	71 
	71 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	94 
	94 

	140 
	140 


	72 
	72 
	72 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	94 
	94 

	142 
	142 


	73 
	73 
	73 

	160 
	160 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	96 
	96 

	142 
	142 


	74 
	74 
	74 

	160 
	160 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	94 
	94 

	145 
	145 


	75 
	75 
	75 

	160 
	160 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	97 
	97 

	142 
	142 


	76 
	76 
	76 

	200 
	200 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	96 
	96 

	143 
	143 


	77 
	77 
	77 

	200 
	200 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	100 
	100 

	145 
	145 


	78 
	78 
	78 

	180 
	180 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	97 
	97 

	149 
	149 


	79 
	79 
	79 

	180 
	180 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	100 
	100 

	149 
	149 


	80 
	80 
	80 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	97 
	97 

	155 
	155 


	81 
	81 
	81 

	180 
	180 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	100 
	100 

	158 
	158 




	 
	  
	Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid 
	Appendix 11: Hyperparameter Tuning Results: DQN in 2x2 Grid 
	with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	-batch 
	-batch 

	Discount Factor 
	Discount Factor 

	Green Duration 
	Green Duration 

	Learnig Rate 
	Learnig Rate 

	-lre 
	-lre 

	Number of Hidden Layers 
	Number of Hidden Layers 

	-nreplay 
	-nreplay 

	Temporal Difference Steps 
	Temporal Difference Steps 

	Update Frequency 
	Update Frequency 

	-updates 
	-updates 

	Mean  
	Mean  
	(seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	99 
	99 

	169 
	169 


	2 
	2 
	2 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	107 
	107 

	203 
	203 


	3 
	3 
	3 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	118 
	118 

	231 
	231 


	4 
	4 
	4 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	114 
	114 

	238 
	238 


	5 
	5 
	5 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	138 
	138 

	216 
	216 


	6 
	6 
	6 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	116 
	116 

	251 
	251 


	7 
	7 
	7 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	131 
	131 

	290 
	290 


	8 
	8 
	8 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	148 
	148 

	283 
	283 


	9 
	9 
	9 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	148 
	148 

	307 
	307 




	 
	  
	Appendix 12: Hyperparameter Tuning Results: M
	Appendix 12: Hyperparameter Tuning Results: M
	ax
	-
	press
	ure in 2x2 
	Grid
	 
	Network with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration 
	Green Duration 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	24 
	24 

	97 
	97 

	101 
	101 


	2 
	2 
	2 

	23 
	23 

	105 
	105 

	132 
	132 


	3 
	3 
	3 

	6 
	6 

	104 
	104 

	135 
	135 


	4 
	4 
	4 

	9 
	9 

	106 
	106 

	135 
	135 


	5 
	5 
	5 

	16 
	16 

	109 
	109 

	144 
	144 


	6 
	6 
	6 

	5 
	5 

	108 
	108 

	155 
	155 


	7 
	7 
	7 

	17 
	17 

	111 
	111 

	152 
	152 


	8 
	8 
	8 

	19 
	19 

	109 
	109 

	169 
	169 


	9 
	9 
	9 

	15 
	15 

	110 
	110 

	169 
	169 


	10 
	10 
	10 

	12 
	12 

	113 
	113 

	172 
	172 


	11 
	11 
	11 

	8 
	8 

	118 
	118 

	193 
	193 


	12 
	12 
	12 

	7 
	7 

	120 
	120 

	209 
	209 


	13 
	13 
	13 

	11 
	11 

	125 
	125 

	220 
	220 


	14 
	14 
	14 

	18 
	18 

	126 
	126 

	234 
	234 


	15 
	15 
	15 

	25 
	25 

	129 
	129 

	231 
	231 


	16 
	16 
	16 

	21 
	21 

	133 
	133 

	235 
	235 


	17 
	17 
	17 

	14 
	14 

	130 
	130 

	240 
	240 


	18 
	18 
	18 

	13 
	13 

	130 
	130 

	244 
	244 


	19 
	19 
	19 

	20 
	20 

	140 
	140 

	283 
	283 


	20 
	20 
	20 

	10 
	10 

	155 
	155 

	327 
	327 


	21 
	21 
	21 

	22 
	22 

	155 
	155 

	336 
	336 




	 
	  
	Appendix 13: Hyperparameter Tuning Results: Uniform
	Appendix 13: Hyperparameter Tuning Results: Uniform
	 
	in 2x2 Grid 
	Network with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration (seconds) 
	Green Duration (seconds) 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	8 
	8 

	110 
	110 

	110 
	110 


	2 
	2 
	2 

	23 
	23 

	129 
	129 

	116 
	116 


	3 
	3 
	3 

	10 
	10 

	118 
	118 

	143 
	143 


	4 
	4 
	4 

	16 
	16 

	129 
	129 

	137 
	137 


	5 
	5 
	5 

	20 
	20 

	130 
	130 

	138 
	138 


	6 
	6 
	6 

	13 
	13 

	127 
	127 

	146 
	146 


	7 
	7 
	7 

	15 
	15 

	129 
	129 

	144 
	144 


	8 
	8 
	8 

	12 
	12 

	125 
	125 

	152 
	152 


	9 
	9 
	9 

	24 
	24 

	137 
	137 

	140 
	140 


	10 
	10 
	10 

	18 
	18 

	133 
	133 

	145 
	145 


	11 
	11 
	11 

	25 
	25 

	138 
	138 

	140 
	140 


	12 
	12 
	12 

	19 
	19 

	133 
	133 

	146 
	146 


	13 
	13 
	13 

	21 
	21 

	138 
	138 

	157 
	157 


	14 
	14 
	14 

	14 
	14 

	139 
	139 

	180 
	180 


	15 
	15 
	15 

	22 
	22 

	146 
	146 

	178 
	178 


	16 
	16 
	16 

	9 
	9 

	137 
	137 

	199 
	199 


	17 
	17 
	17 

	17 
	17 

	152 
	152 

	245 
	245 


	18 
	18 
	18 

	7 
	7 

	141 
	141 

	271 
	271 


	19 
	19 
	19 

	11 
	11 

	150 
	150 

	263 
	263 


	20 
	20 
	20 

	5 
	5 

	158 
	158 

	272 
	272 


	21 
	21 
	21 

	6 
	6 

	163 
	163 

	270 
	270 




	 
	  
	Appendix 14: Hyperparameter Tuning Results: Webster’s
	Appendix 14: Hyperparameter Tuning Results: Webster’s
	 
	in 2x2 
	Grid Network with 6,000 Traffic Demand and Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Max Cycle Length (seconds) 
	Max Cycle Length (seconds) 

	Min Cycle Length (seconds) 
	Min Cycle Length (seconds) 

	Time Interval (seconds) 
	Time Interval (seconds) 

	Saturation Flow Rate 
	Saturation Flow Rate 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	180 
	180 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	105 
	105 

	110 
	110 


	2 
	2 
	2 

	200 
	200 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	109 
	109 

	111 
	111 


	3 
	3 
	3 

	160 
	160 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	106 
	106 

	120 
	120 


	4 
	4 
	4 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	106 
	106 

	125 
	125 


	5 
	5 
	5 

	160 
	160 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	111 
	111 

	125 
	125 


	6 
	6 
	6 

	180 
	180 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	111 
	111 

	126 
	126 


	7 
	7 
	7 

	160 
	160 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	111 
	111 

	127 
	127 


	8 
	8 
	8 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	110 
	110 

	129 
	129 


	9 
	9 
	9 

	160 
	160 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	109 
	109 

	135 
	135 


	10 
	10 
	10 

	200 
	200 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	114 
	114 

	131 
	131 


	11 
	11 
	11 

	160 
	160 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	111 
	111 

	137 
	137 


	12 
	12 
	12 

	180 
	180 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	110 
	110 

	139 
	139 


	13 
	13 
	13 

	160 
	160 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	111 
	111 

	139 
	139 


	14 
	14 
	14 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	113 
	113 

	137 
	137 


	15 
	15 
	15 

	180 
	180 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	112 
	112 

	143 
	143 


	16 
	16 
	16 

	160 
	160 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	113 
	113 

	143 
	143 


	17 
	17 
	17 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	113 
	113 

	143 
	143 


	18 
	18 
	18 

	180 
	180 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	118 
	118 

	142 
	142 


	19 
	19 
	19 

	200 
	200 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	113 
	113 

	149 
	149 


	20 
	20 
	20 

	200 
	200 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	114 
	114 

	151 
	151 


	21 
	21 
	21 

	200 
	200 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	112 
	112 

	155 
	155 


	22 
	22 
	22 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	111 
	111 

	158 
	158 


	23 
	23 
	23 

	160 
	160 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	116 
	116 

	154 
	154 


	24 
	24 
	24 

	180 
	180 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	119 
	119 

	160 
	160 


	25 
	25 
	25 

	180 
	180 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	116 
	116 

	167 
	167 


	26 
	26 
	26 

	200 
	200 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	116 
	116 

	169 
	169 


	27 
	27 
	27 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	120 
	120 

	166 
	166 


	28 
	28 
	28 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	118 
	118 

	168 
	168 




	29 
	29 
	29 
	29 
	29 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	113 
	113 

	175 
	175 


	30 
	30 
	30 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	122 
	122 

	168 
	168 


	31 
	31 
	31 

	180 
	180 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	123 
	123 

	168 
	168 


	32 
	32 
	32 

	160 
	160 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	119 
	119 

	180 
	180 


	33 
	33 
	33 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	123 
	123 

	177 
	177 


	34 
	34 
	34 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	119 
	119 

	181 
	181 


	35 
	35 
	35 

	200 
	200 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	119 
	119 

	181 
	181 


	36 
	36 
	36 

	180 
	180 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	119 
	119 

	184 
	184 


	37 
	37 
	37 

	160 
	160 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	118 
	118 

	187 
	187 


	38 
	38 
	38 

	160 
	160 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	119 
	119 

	187 
	187 


	39 
	39 
	39 

	180 
	180 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	128 
	128 

	179 
	179 


	40 
	40 
	40 

	200 
	200 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	125 
	125 

	182 
	182 


	41 
	41 
	41 

	180 
	180 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	120 
	120 

	188 
	188 


	42 
	42 
	42 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	120 
	120 

	191 
	191 


	43 
	43 
	43 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	124 
	124 

	192 
	192 


	44 
	44 
	44 

	160 
	160 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	126 
	126 

	192 
	192 


	45 
	45 
	45 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	124 
	124 

	196 
	196 


	46 
	46 
	46 

	160 
	160 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	125 
	125 

	196 
	196 


	47 
	47 
	47 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	125 
	125 

	197 
	197 


	48 
	48 
	48 

	180 
	180 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	124 
	124 

	201 
	201 


	49 
	49 
	49 

	200 
	200 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	122 
	122 

	204 
	204 


	50 
	50 
	50 

	200 
	200 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	126 
	126 

	203 
	203 


	51 
	51 
	51 

	180 
	180 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	128 
	128 

	204 
	204 


	52 
	52 
	52 

	160 
	160 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	123 
	123 

	210 
	210 


	53 
	53 
	53 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	127 
	127 

	207 
	207 


	54 
	54 
	54 

	180 
	180 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	131 
	131 

	207 
	207 


	55 
	55 
	55 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	127 
	127 

	211 
	211 


	56 
	56 
	56 

	180 
	180 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	127 
	127 

	212 
	212 


	57 
	57 
	57 

	180 
	180 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	133 
	133 

	213 
	213 


	58 
	58 
	58 

	200 
	200 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	130 
	130 

	216 
	216 


	59 
	59 
	59 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	128 
	128 

	220 
	220 


	60 
	60 
	60 

	160 
	160 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	129 
	129 

	221 
	221 


	61 
	61 
	61 

	200 
	200 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	130 
	130 

	221 
	221 




	62 
	62 
	62 
	62 
	62 

	200 
	200 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	135 
	135 

	219 
	219 


	63 
	63 
	63 

	200 
	200 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	130 
	130 

	225 
	225 


	64 
	64 
	64 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	129 
	129 

	231 
	231 


	65 
	65 
	65 

	180 
	180 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	135 
	135 

	226 
	226 


	66 
	66 
	66 

	180 
	180 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	133 
	133 

	234 
	234 


	67 
	67 
	67 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	136 
	136 

	234 
	234 


	68 
	68 
	68 

	160 
	160 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	136 
	136 

	238 
	238 


	69 
	69 
	69 

	200 
	200 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	136 
	136 

	242 
	242 


	70 
	70 
	70 

	160 
	160 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	142 
	142 

	239 
	239 


	71 
	71 
	71 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	139 
	139 

	248 
	248 


	72 
	72 
	72 

	200 
	200 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	138 
	138 

	253 
	253 


	73 
	73 
	73 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	140 
	140 

	252 
	252 


	74 
	74 
	74 

	200 
	200 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	139 
	139 

	257 
	257 


	75 
	75 
	75 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	141 
	141 

	256 
	256 


	76 
	76 
	76 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	150 
	150 

	255 
	255 


	77 
	77 
	77 

	200 
	200 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	144 
	144 

	281 
	281 


	78 
	78 
	78 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	149 
	149 

	277 
	277 


	79 
	79 
	79 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	151 
	151 

	279 
	279 


	80 
	80 
	80 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	153 
	153 

	290 
	290 


	81 
	81 
	81 

	160 
	160 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	151 
	151 

	300 
	300 




	 
	  
	Appendix 15: 
	Appendix 15: 
	Hyperparameter Tuning Results For 
	DQN
	 
	i
	n 2x2 Grid 
	Network 
	w
	ith 6
	,
	000 Traffic Demand 
	a
	nd No Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	-batch 
	-batch 

	Discount Factor 
	Discount Factor 

	Green Duration 
	Green Duration 

	Learning Rate 
	Learning Rate 

	-lre 
	-lre 

	Number of Hidden Layers 
	Number of Hidden Layers 

	-nreplay 
	-nreplay 

	Temporal Difference Steps 
	Temporal Difference Steps 

	Update Frequency 
	Update Frequency 

	-updates 
	-updates 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	68 
	68 

	30 
	30 


	2 
	2 
	2 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	69 
	69 

	30 
	30 


	3 
	3 
	3 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	69 
	69 

	30 
	30 


	4 
	4 
	4 

	128 
	128 

	0.5 
	0.5 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	70 
	70 

	31 
	31 


	5 
	5 
	5 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	70 
	70 

	31 
	31 


	6 
	6 
	6 

	128 
	128 

	0.7 
	0.7 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	71 
	71 

	32 
	32 


	7 
	7 
	7 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-04 
	1.00E-04 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	71 
	71 

	32 
	32 


	8 
	8 
	8 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-03 
	1.00E-03 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	81 
	81 

	42 
	42 


	9 
	9 
	9 

	128 
	128 

	0.9 
	0.9 

	6 
	6 

	1.00E-05 
	1.00E-05 

	1.00E-07 
	1.00E-07 

	6 
	6 

	1600000 
	1600000 

	2 
	2 

	128 
	128 

	5000 
	5000 

	89 
	89 

	53 
	53 




	 
	  
	Appendix 16: 
	Appendix 16: 
	Hyperparameter Tuning Results For 
	M
	ax
	-
	press
	ure
	 
	i
	n 
	2x2 Grid Network with 6,000 Traffic Demand and No Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration 
	Green Duration 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	5 
	5 

	80 
	80 

	36 
	36 


	2 
	2 
	2 

	6 
	6 

	81 
	81 

	37 
	37 


	3 
	3 
	3 

	7 
	7 

	81 
	81 

	37 
	37 


	4 
	4 
	4 

	8 
	8 

	83 
	83 

	38 
	38 


	5 
	5 
	5 

	9 
	9 

	85 
	85 

	39 
	39 


	6 
	6 
	6 

	17 
	17 

	84 
	84 

	40 
	40 


	7 
	7 
	7 

	20 
	20 

	84 
	84 

	40 
	40 


	8 
	8 
	8 

	16 
	16 

	85 
	85 

	41 
	41 


	9 
	9 
	9 

	18 
	18 

	85 
	85 

	41 
	41 


	10 
	10 
	10 

	19 
	19 

	85 
	85 

	41 
	41 


	11 
	11 
	11 

	21 
	21 

	85 
	85 

	41 
	41 


	12 
	12 
	12 

	23 
	23 

	85 
	85 

	41 
	41 


	13 
	13 
	13 

	10 
	10 

	86 
	86 

	41 
	41 


	14 
	14 
	14 

	11 
	11 

	86 
	86 

	41 
	41 


	15 
	15 
	15 

	22 
	22 

	85 
	85 

	42 
	42 


	16 
	16 
	16 

	24 
	24 

	85 
	85 

	42 
	42 


	17 
	17 
	17 

	25 
	25 

	85 
	85 

	42 
	42 


	18 
	18 
	18 

	12 
	12 

	86 
	86 

	42 
	42 


	19 
	19 
	19 

	14 
	14 

	86 
	86 

	42 
	42 


	20 
	20 
	20 

	15 
	15 

	86 
	86 

	42 
	42 


	21 
	21 
	21 

	13 
	13 

	87 
	87 

	42 
	42 




	 
	  
	Appendix 17: 
	Appendix 17: 
	Hyperparameter Tuning Results For 
	Uniform
	 
	i
	n 2x2 
	Grid Network 
	with 6,000 Traffic Demand and No Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Green Duration (seconds) 
	Green Duration (seconds) 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	7 
	7 

	90 
	90 

	40 
	40 


	2 
	2 
	2 

	9 
	9 

	91 
	91 

	41 
	41 


	3 
	3 
	3 

	10 
	10 

	93 
	93 

	41 
	41 


	4 
	4 
	4 

	8 
	8 

	93 
	93 

	42 
	42 


	5 
	5 
	5 

	11 
	11 

	96 
	96 

	44 
	44 


	6 
	6 
	6 

	12 
	12 

	97 
	97 

	45 
	45 


	7 
	7 
	7 

	6 
	6 

	96 
	96 

	48 
	48 


	8 
	8 
	8 

	13 
	13 

	100 
	100 

	47 
	47 


	9 
	9 
	9 

	14 
	14 

	103 
	103 

	49 
	49 


	10 
	10 
	10 

	5 
	5 

	103 
	103 

	52 
	52 


	11 
	11 
	11 

	15 
	15 

	105 
	105 

	51 
	51 


	12 
	12 
	12 

	16 
	16 

	107 
	107 

	53 
	53 


	13 
	13 
	13 

	17 
	17 

	108 
	108 

	54 
	54 


	14 
	14 
	14 

	18 
	18 

	109 
	109 

	55 
	55 


	15 
	15 
	15 

	19 
	19 

	109 
	109 

	55 
	55 


	16 
	16 
	16 

	20 
	20 

	110 
	110 

	57 
	57 


	17 
	17 
	17 

	21 
	21 

	112 
	112 

	58 
	58 


	18 
	18 
	18 

	22 
	22 

	113 
	113 

	59 
	59 


	19 
	19 
	19 

	23 
	23 

	114 
	114 

	60 
	60 


	20 
	20 
	20 

	24 
	24 

	115 
	115 

	62 
	62 


	21 
	21 
	21 

	25 
	25 

	117 
	117 

	63 
	63 




	 
	  
	Appendix 18: 
	Appendix 18: 
	Hyperparameter Tuning Results For 
	Websters
	 
	i
	n 2x2 
	Grid Network with 6,000 Traffic Demand and No Incident
	 

	ID 
	ID 
	ID 
	ID 
	ID 

	Max Cycle Length (seconds) 
	Max Cycle Length (seconds) 

	Min Cycle Length (seconds) 
	Min Cycle Length (seconds) 

	Time Interval (seconds) 
	Time Interval (seconds) 

	Satuation Flow Rate 
	Satuation Flow Rate 

	Mean (seconds) 
	Mean (seconds) 

	Standard Deviation (seconds) 
	Standard Deviation (seconds) 



	1 
	1 
	1 
	1 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	87 
	87 

	39 
	39 


	2 
	2 
	2 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	87 
	87 

	39 
	39 


	3 
	3 
	3 

	160 
	160 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	87 
	87 

	40 
	40 


	4 
	4 
	4 

	160 
	160 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	87 
	87 

	40 
	40 


	5 
	5 
	5 

	160 
	160 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	87 
	87 

	40 
	40 


	6 
	6 
	6 

	180 
	180 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	87 
	87 

	40 
	40 


	7 
	7 
	7 

	180 
	180 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	87 
	87 

	40 
	40 


	8 
	8 
	8 

	180 
	180 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	87 
	87 

	40 
	40 


	9 
	9 
	9 

	180 
	180 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	87 
	87 

	40 
	40 


	10 
	10 
	10 

	200 
	200 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	87 
	87 

	40 
	40 


	11 
	11 
	11 

	200 
	200 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	87 
	87 

	40 
	40 


	12 
	12 
	12 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	87 
	87 

	40 
	40 


	13 
	13 
	13 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	87 
	87 

	40 
	40 


	14 
	14 
	14 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	88 
	88 

	40 
	40 


	15 
	15 
	15 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.38 
	0.38 

	88 
	88 

	40 
	40 


	16 
	16 
	16 

	160 
	160 

	40 
	40 

	1800 
	1800 

	0.44 
	0.44 

	88 
	88 

	40 
	40 


	17 
	17 
	17 

	200 
	200 

	40 
	40 

	1800 
	1800 

	0.3 
	0.3 

	88 
	88 

	40 
	40 


	18 
	18 
	18 

	160 
	160 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	88 
	88 

	41 
	41 


	19 
	19 
	19 

	160 
	160 

	40 
	40 

	900 
	900 

	0.44 
	0.44 

	88 
	88 

	41 
	41 


	20 
	20 
	20 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	88 
	88 

	41 
	41 


	21 
	21 
	21 

	180 
	180 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	88 
	88 

	41 
	41 


	22 
	22 
	22 

	180 
	180 

	40 
	40 

	600 
	600 

	0.38 
	0.38 

	88 
	88 

	41 
	41 


	23 
	23 
	23 

	180 
	180 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	88 
	88 

	41 
	41 


	24 
	24 
	24 

	200 
	200 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	88 
	88 

	41 
	41 


	25 
	25 
	25 

	200 
	200 

	40 
	40 

	600 
	600 

	0.44 
	0.44 

	88 
	88 

	41 
	41 


	26 
	26 
	26 

	200 
	200 

	40 
	40 

	900 
	900 

	0.3 
	0.3 

	88 
	88 

	41 
	41 


	27 
	27 
	27 

	200 
	200 

	40 
	40 

	900 
	900 

	0.38 
	0.38 

	88 
	88 

	41 
	41 


	28 
	28 
	28 

	200 
	200 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	89 
	89 

	41 
	41 




	29 
	29 
	29 
	29 
	29 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	88 
	88 

	42 
	42 


	30 
	30 
	30 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	88 
	88 

	42 
	42 


	31 
	31 
	31 

	160 
	160 

	40 
	40 

	600 
	600 

	0.3 
	0.3 

	89 
	89 

	42 
	42 


	32 
	32 
	32 

	160 
	160 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	89 
	89 

	42 
	42 


	33 
	33 
	33 

	160 
	160 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	89 
	89 

	42 
	42 


	34 
	34 
	34 

	160 
	160 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	89 
	89 

	42 
	42 


	35 
	35 
	35 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	89 
	89 

	42 
	42 


	36 
	36 
	36 

	180 
	180 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	89 
	89 

	42 
	42 


	37 
	37 
	37 

	180 
	180 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	89 
	89 

	42 
	42 


	38 
	38 
	38 

	180 
	180 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	89 
	89 

	42 
	42 


	39 
	39 
	39 

	180 
	180 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	89 
	89 

	42 
	42 


	40 
	40 
	40 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.3 
	0.3 

	89 
	89 

	42 
	42 


	41 
	41 
	41 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	89 
	89 

	42 
	42 


	42 
	42 
	42 

	180 
	180 

	60 
	60 

	1800 
	1800 

	0.44 
	0.44 

	89 
	89 

	42 
	42 


	43 
	43 
	43 

	200 
	200 

	60 
	60 

	600 
	600 

	0.38 
	0.38 

	89 
	89 

	42 
	42 


	44 
	44 
	44 

	200 
	200 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	89 
	89 

	42 
	42 


	45 
	45 
	45 

	200 
	200 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	89 
	89 

	42 
	42 


	46 
	46 
	46 

	160 
	160 

	60 
	60 

	900 
	900 

	0.3 
	0.3 

	89 
	89 

	43 
	43 


	47 
	47 
	47 

	160 
	160 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	89 
	89 

	43 
	43 


	48 
	48 
	48 

	160 
	160 

	60 
	60 

	1800 
	1800 

	0.38 
	0.38 

	89 
	89 

	43 
	43 


	49 
	49 
	49 

	180 
	180 

	60 
	60 

	900 
	900 

	0.38 
	0.38 

	89 
	89 

	43 
	43 


	50 
	50 
	50 

	200 
	200 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	89 
	89 

	43 
	43 


	51 
	51 
	51 

	200 
	200 

	60 
	60 

	900 
	900 

	0.44 
	0.44 

	89 
	89 

	43 
	43 


	52 
	52 
	52 

	160 
	160 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	90 
	90 

	43 
	43 


	53 
	53 
	53 

	180 
	180 

	60 
	60 

	600 
	600 

	0.3 
	0.3 

	90 
	90 

	43 
	43 


	54 
	54 
	54 

	200 
	200 

	60 
	60 

	600 
	600 

	0.44 
	0.44 

	90 
	90 

	43 
	43 


	55 
	55 
	55 

	160 
	160 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	93 
	93 

	46 
	46 


	56 
	56 
	56 

	160 
	160 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	93 
	93 

	46 
	46 


	57 
	57 
	57 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	93 
	93 

	46 
	46 


	58 
	58 
	58 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	93 
	93 

	46 
	46 


	59 
	59 
	59 

	160 
	160 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	93 
	93 

	46 
	46 


	60 
	60 
	60 

	180 
	180 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	93 
	93 

	46 
	46 


	61 
	61 
	61 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	93 
	93 

	46 
	46 




	62 
	62 
	62 
	62 
	62 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	93 
	93 

	46 
	46 


	63 
	63 
	63 

	180 
	180 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	93 
	93 

	46 
	46 


	64 
	64 
	64 

	200 
	200 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	93 
	93 

	46 
	46 


	65 
	65 
	65 

	200 
	200 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	93 
	93 

	46 
	46 


	66 
	66 
	66 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.3 
	0.3 

	93 
	93 

	46 
	46 


	67 
	67 
	67 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.38 
	0.38 

	93 
	93 

	46 
	46 


	68 
	68 
	68 

	200 
	200 

	80 
	80 

	1800 
	1800 

	0.44 
	0.44 

	93 
	93 

	46 
	46 


	69 
	69 
	69 

	180 
	180 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	93 
	93 

	47 
	47 


	70 
	70 
	70 

	160 
	160 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	94 
	94 

	47 
	47 


	71 
	71 
	71 

	160 
	160 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	94 
	94 

	47 
	47 


	72 
	72 
	72 

	160 
	160 

	80 
	80 

	900 
	900 

	0.38 
	0.38 

	94 
	94 

	47 
	47 


	73 
	73 
	73 

	160 
	160 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	94 
	94 

	47 
	47 


	74 
	74 
	74 

	180 
	180 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	94 
	94 

	47 
	47 


	75 
	75 
	75 

	180 
	180 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	94 
	94 

	47 
	47 


	76 
	76 
	76 

	180 
	180 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	94 
	94 

	47 
	47 


	77 
	77 
	77 

	180 
	180 

	80 
	80 

	900 
	900 

	0.44 
	0.44 

	94 
	94 

	47 
	47 


	78 
	78 
	78 

	200 
	200 

	80 
	80 

	600 
	600 

	0.3 
	0.3 

	94 
	94 

	47 
	47 


	79 
	79 
	79 

	200 
	200 

	80 
	80 

	600 
	600 

	0.38 
	0.38 

	94 
	94 

	47 
	47 


	80 
	80 
	80 

	200 
	200 

	80 
	80 

	600 
	600 

	0.44 
	0.44 

	94 
	94 

	47 
	47 


	81 
	81 
	81 

	200 
	200 

	80 
	80 

	900 
	900 

	0.3 
	0.3 

	94 
	94 

	47 
	47 
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